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Let f be a locally integrable function in the n-dimensional Euclidean
space Rn and define the Hardy-Littlewood maximal function as follows:
Mf(x) = sup |Q|−1

∫
Q
|f |, where the sup is taken over all the balls Q cen-

tered at x. The kth iteration of M is defined by induction: M kf(x) =
M(Mk−1f)(x). The main result of the paper can be formulated as follows:
Theorem 2.3: (1) If 1 < p < ∞, then the Lp norms of f and Mkf are
equivalent for k ≥ 1. Let f ∈ L1(Rn), supp f ⊂ B, where B is a finite
ball; then (2) for p = 1,

∫
B

Mkf < ∞ iff
∫

B
|f |(log |f |)k < ∞, and (3) for

0 < p < 1,
∫

B
(Mkf)p < ∞ iff

∫
B
|f |(log |f |)k−1 < ∞.

The second part of the paper is devoted to the generalizations of these
and similar results to the case of linear spaces over local fields.
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Abstract

In light of two measure estimate inequalities from [2] for the it-
erated Hardy-Littlewood maximal operator M kf , certain equivalence
between Mkf and the Zygmund class L loga L are established on R

n,
so that we generalize Stein’s L log L theorem. In Section 3, a simple in-
duction enables us to prove such extensions on Kn, the n-dimensional
linear space over a local field K, without recoursing to Leckband’s
result.

1 Introduction

Using the argument of nonincreasing rearrangement of f , Leckband obtained
(for technique reasons, we record as follows):

Theorem L Let λ > 0 and k ∈ N. Then there exist constants A > 1 and
0 < B < 1 dependent only on n, k so that

(i) |{x ∈ R
n : Mkf(x) > λ}| ≤ A

∫
{|f |>λ/A}

|f(x)|

λ
(1 + log+ |f(x)|

λ
)k−1dx,

(ii) |{x ∈ R
n : Mkf(x) > Bλ}| ≤ A

∫
{|f |>λ}

|f(x)|

λ
(1+log+ |f(x)|

Bλ
)k−1dx,

where the set {g > λ} = {x ∈ R
n : g(x) > λ} and the function log+ x =

max{log x, 0}, x ≥ 0.

The following pointwise estimate in Pérez[5] may have intimate relation
with Leckband inequality above.

For k = 1, 2, . . . ,
Mk+1f(x) ∼ Mϕk

f(x),

where ϕk(t) = t(1 + log+ t)k.

Let (X, d, µ) be a space of homogeneous type, where d is a quasi-metric
on the set X and µ is a doubling Borel measure; moreover, µ(B(x, r)) < ∞,
B(x, r) = {y ∈ X : d(x, y) < r}.

Macias and Segovia showed that there exists a quasi-metric ρ, generating
the same topology as d. Among other properties, there is a δ0 > 0 such that
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ρ(x, y)δ0 is a metric on X. (When X = R
n, d(x, y) = |x − y|, we may take

ρ(x, y) = |x − y|n, then δ0 = 1/n.
Note.
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