A REPRESENTATION FORMULA RELATED TO SCHRÖDINGER OPERATORS

SHIJUN ZHENG

ABSTRACT. Let $H = -d^2/dx^2 + V$ be a Schrödinger operator on the real line, where $V \in L^1 \cap L^2$. We define the perturbed Fourier transform \mathcal{F} for H and show that \mathcal{F} is an isometry from the absolute continuous subspace onto $L^2(\mathbb{R})$. This property allows us to construct a kernel formula for the spectral operator $\varphi(H)$. The main theorem improves the previous reslut obtained by the author for certain short-range potentials.

Schrödinger operator is a central subject in the mathematical study of quantum mechanics. Consider the Schrödinger operator $H = -\Delta + V$ on \mathbb{R} , where $\Delta = d^2/dx^2$ and the potential function V is real valued. In Fourier analysis, it is well-known that a square integrable function admits an expansion with exponentials as eigenfunctions of $-\Delta$. A natural conjecture is that an L^2 function admits a similar expansion in terms of "eigenfunctions" of H, a perturbation of the Laplacian (see [7]. Ch.XI and the notes), under certain condition on V.

The three dimension analogue was proven true by T.Ikebe [6], a member of Kato's school, in 1960. Later his result was extended by Thor to the higher dimension case [10]. In one dimension, recent related results can be found in e.g., Guerin-Holschneider [5], Christ-Kiselev [4] and Benedetto-Zheng [3].

Throughout this paper we assume $V : \mathbb{R} \to \mathbb{R}$ is in $L^1 \cap L^2$. We shall prove a one-dimensional version of Ikebe's theorem for L^2 functions (Theorem 1). Theorem 2 presents an integral formula for the kernel of the spectral operator $\varphi(H)$ for a continuous function φ with compact support. In a sequel to this paper we shall use this explicit formula to study function spaces associated with H (see [3]).

The generalized eigenfunctions $e(x,\xi), \xi \in \mathbb{R}$ of H satisfy

(1)
$$(-d^2/dx^2 + V(x))e(x,\xi) = \xi^2 e(x,\xi)$$

Date: August 2, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 42C15; Secondary: 35P25. Key words and phrases. spectral theory, Schrödinger operator.

The author is supported in part by DARPA (Defense Advanced Research Projects Agency).

in the sense of distributions.

Definition. The *perturbed Fourier transform* \mathcal{F} on L^2 is given by

(2)
$$\mathcal{F}f(\xi) = \text{l.i.m.}(2\pi)^{-1/2} \int f(x)\overline{e(x,\xi)} \, dx$$
$$= \lim_{N \to \infty} (2\pi)^{-1/2} \int_{-N}^{N} f(x)\overline{e(x,\xi)} \, dx,$$

where the convergence is in L^2 norm as $N \to \infty$. By Theorem 1, \mathcal{F} is a well-defined isometry from \mathcal{H}_{ac} onto L^2 .

Theorem 1. Suppose $V \in L^1 \cap L^2$. Then there exists a family of solutions $e(x,\xi)$, $|\xi| \in [0,\infty) \setminus \mathcal{E}_0$, \mathcal{E}_0 being a bounded closed set of measure zero, to equation (1) with the following properties.

(i) If $f \in L^2$, then there exists an element $\tilde{f} \in L^2$ such that

$$\mathcal{F}f(\xi) = \tilde{f}(\xi) \qquad in \ L^2.$$

(ii) The adjoint operator \mathcal{F}^* is given by

$$\mathcal{F}^*g = l.i.m_{N \to \infty} \sum_{i=1}^N (2\pi)^{-1/2} \int_{\alpha_i \le \xi^2 \le \beta_i} g(\xi) e(x,\xi) \, d\xi$$

in L^2 , where $[\alpha_i, \beta_i) \subset (0, \infty)$ are a countable collection of disjoint intervals with $[0, \infty) \setminus \mathcal{E}_0^2$ equal to $\cup_i [\alpha_i, \beta_i)$.

(iii) If $f \in L^2$, then $||P_{ac}f||_{L^2} = ||\tilde{f}||_{L^2}$, where P_{ac} is the projection onto \mathcal{H}_{ac} , the absolute continuous subspace in L^2 .

- (iv) $\mathcal{F}: L^2 \to L^2$ is a surjection. Moreover, $\mathcal{FF}^* = Id$ and $\mathcal{F}^*\mathcal{F} = P_{ac}$.
- (v) If $f \in \mathcal{D}(H)$, then $(Hf)^{\sim}(\xi) = \xi^2 \tilde{f}(\xi)$ in L^2 .

Remark 1. The proof is based on the ideas of [6] for 3D. We also use some simplifications as found in Reed and Simon([7]) and Simon[8].

Remark 2. If $|e(x,\xi)| \leq C$ a.e. $(x,\xi) \in \mathbb{R}^2$, then we have a "betterlooking" form in (*ii*) of the theorem

$$\mathcal{F}^* g = \text{l.i.m.}(2\pi)^{-1/2} \int g(\xi) e(x,\xi) \, d\xi.$$

If $H = \int \lambda dE_{\lambda}$ is the spectral resolution of H, define the spectral operator $\varphi(H) := \int \varphi(\lambda) dE_{\lambda}$ by functional calculus. We prove a representation formula for the integral kernel of $\varphi(H)$.

Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis in \mathcal{H}_p , the subspace of eigenfunctions in L^2 for H and let λ_k be the eigenvalue corresponding to e_k .

Theorem 2. Let the operator H be as in Theorem 1. Suppose $\varphi : \mathbb{R} \to \mathbb{C}$ is continuous and has a compact support disjoint from $\mathcal{E}_0^2 := \{\eta^2 : \eta \in \mathcal{E}_0\}$. Then for $f \in L^1 \cap L^2$

(3)
$$\varphi(H)f(x) = \int_{-\infty}^{\infty} K(x,y)f(y) \, dy$$

where $K = K_{ac} + K_p$,

$$K_{ac}(x,y) = (2\pi)^{-1} \int_{-\infty}^{\infty} \varphi(\xi^2) e(x,\xi) \overline{e(y,\xi)} \, d\xi.$$

and

$$K_p(x,y) = \sum_k \varphi(\lambda_k) e_k(x) \bar{e}_k(y).$$

Remark 1. If $|e(x,\xi)| \leq C$, a.e. $(x,\xi) \in \mathbb{R}^2$, then, under the same condition the integral expression (3) is valid for any $\varphi \in C(\mathbb{R})$ with compact support.

Remark 2. When φ is smooth with rapid decay and V is compactly supported in \mathbb{R}^3 , a formula of this type appeared in [9] by Tao.

References

- P. Alsholm, G. Schmidt, Spectral and scattering theory for Schrödinger operators, Arch. Rational Mech. Anal. 40 (1971), 281–311.
- [2] J. J. Benedetto, Harmonic Analysis and Applications, CRC Press, Inc., Boca Raton. FL, 1997.
- [3] J. J. Benedetto and S. Zheng, Besov spaces for the Schrödinger operator with barrier potential, *submitted*.
- [4] M. Christ and A. Kiselev, One-Dimensional Schrödinger operators with slowly decaying potentials: spectra and asymptotics, or, *Baby Fourier Analysis Meets Toy Quantum Mechanics*, Notes for IPAM tutorial, 2001 Workshop on Oscillatory Integrals and Dispersive Equations.
- [5] C.-A. Guerin, M. Holschneider, Time-dependent scattering on fractal measures, J. Math. Physics 39(8), 1998.
- [6] T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1–34. (Erratum, Remarks on the orthogonality of eigenfunctions for the Schrödinger operator on Rⁿ, J. Fac. Sci. Univ. Tokyo Sect.I 17, 1970)
- [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, New York, 1979.
- [8] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, New Jersey, 1971.

S. ZHENG

- [9] T. Tao, Scattering for the 3D Schrödinger equation with compactly supported potential, *Preprint*.
- [10] D. Thoe, Eigenfunction expansions associated with Schrödinger operators in \mathbb{R}^n , $n \geq 4$, Arch. Rational Mech. Anal. **26** (1967), 335–356.
- [11] Q. Zhang, Global bounds of Schrödinger heat kernels with negative potentials, J. Func. Anal. 182(2001), no.2, 344-370.
- [12] S. Zheng, Besov spaces for Schrödinger operators, Dissertation, University of Maryland, 2003.

Department of Mathematics, Louisiana State University, Baton Rouge, LA70803

E-mail address: szheng@math.lsu.edu *URL*: http://www.math.lsu.edu/~szheng

4