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Abstract. The Gross-Pitaevskii equation, or more generally the nonlinear Schrödinger equation, models the Bose-Einstein
condensates in a macroscopic gaseous superfluid wave-matter state in ultra-cold temperature. We provide analytical study of
the NLS with L2 initial data in order to understand propagation of the defocusing and focusing waves for the BEC mechanism
in the presence of electromagnetic fields. Numerical simulations are performed for the two-dimensional GPE with anisotropic
quadratic potentials.
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INTRODUCTION

Consider the nonlinear Schrödinger equation (NLS)

iut =−
1
2
(∇− iA)2u+Vu+µ|u|p−1u (t,x) ∈ R1+n (1)

u(0,x) = u0, (2)

where 1 ≤ p < ∞, µ ∈ R, V : Rn → R induces the electric field −∇V , and A = (A1, . . . ,An) : Rn → Rn

induces the magnetic field B = ∇∧ A = (∂ jAk − ∂kA j)n×n. Denote ∆A = ∇2
A := ∑

n
j=1(

∂

∂x j
− iA j)

2. Then

L :=− 1
2 ∆A +V is an essentially selfadjoint Schrödinger operator with an electromagnetic potential (A,V )

that is gauge-invariant. The nonlinear term F(u) = µ|u|p−1u has the property ℑ(ūF(u)) = 0.
The physical significance for NLS in a magnetic field is well-known in nonlinear optics and Bose-Einstein

condensate (BEC), where the magnetic structure is involved in scattering, superfluid, quantized vortices as
well as DNLS in plasma physics [40, 29, 46]. There have been produced BEC where Bosons, Femions or
other quasi-particles are trapped with atomic lasers in order to observe the macroscopic coherent wave matter
in ultra-cold temperature.

The Hamiltonian H :=
∫ h̄2

2m |∇Au|2 + 2µ

p+1 |u|
p+1generates the nonlinear system (1)

ih̄
∂u
∂ t

=
δH
δ ū

(3)

with h̄ = m = 1 (h̄ being the Planck constant and m the mass of a particle), where we note that the adjoint
of the covariant gradient ∇A is −∇A. When p = 3, we obtain the Gross-Pitaevskii equation (GPE), which
is regarded as a Ginzburg-Landau model in string theory. In general, the operator ∇2

A = (∇− iA)2 contains
components of both the (trapping) angular momentum and (attractive/repulsive) potential that can affect the
dispersion of NLS. The equations (1) = (3) play the role of Newton’s law in classical mechanics [49].



In the state of superfluid, the gaseous BEC has the vortices phenomenon which arises from (in the focusing
case) the bound states of the form u = eiγtQ, Q(x) = eimθ Rm(r) being an excited state. Another situation
where it appears is when we test or manipulate the BEC by a magnetic trap with rotation. The wave function
for the condensate is the solution of the following NLS

i∂tu =−1
2

∇
2u+µ|u|p−1u+Ṽ u−Ω ·Lu, (4)

where the rotation term Ω ·L =−iΩ · (x∧∇), Ω = (ω1, . . . ,ωn) ∈ Rn and L denotes the angular momentum
operator [31, 16, 4]. Comparing (1) and (4) one finds

Ṽ (x) =
1
2
|A(x)|2 +V (x)+

i
2

divA(x) (5)

iΩ · (x∧∇) = iA(x) ·∇. (6)

If n = 3, then divA = 0 with A = (ω2x3 −ω3x2,ω3x1 −ω1x3,ω1x2 −ω2x1). As a 2-form B = curl A is
constant. A simple calculation shows that the tangential component of B is

Bτ = B · r
r
=

 0 2ω3 −2ω2
−2ω3 0 2ω1
2ω2 −2ω1 0

 · r
r
=−2

r
A,

where r = (x1,x2,x3) and r = |r|. This tells that B is a “trapping" field whenever Ω 6= 0. Heuristically Bτ 6= 0
indicates an obstruction to the dispersion [23]. In R3, if the Coulomb gauge divA = 0, then one can recover
A as a “weighted wedge" of x and B

A(x) =
1

4π

∫ x− y
|x− y|3

∧B(y)dy.

Let Ṽ (x) = 1
2 ∑ j γ2

j x2
j and |γ| = (∑ j γ2

j )
1/2. When |Ω| � |γ|, the rotation action is negligible, and the

potential Ṽ is more predominant so that A≈ 0, V ≈ Ṽ = 1
2 ∑ j γ2

j x2
j . In this case we anticipate trapping. When

|Ω| � |γ|, the rotation is much stronger than Ṽ so that the effect of Ṽ ≈ 0⇒ V ≈ −|A|2/2. This suggests
that the wave function of a rotating BEC may be subject to an anisotropic repulsive potential. In this case the
dispersion might hold global in time so that the (focusing) nonlinearity turns to be “short range" resulting
in scattering [37, 12, 4]. Geometrically, the x2 potential affects the wave like the trapping condition, which
is stable, on a spherical portion of a manifold, while the −x2 potential affects the wave like the scattering
(non-trapping) condition on a hyperbolic portion of a manifold, which can be unstable locally in time but
stable global in time.

The main analytical interest of this paper is to study the L2 solution of (1) under the following assumptions
on A and V throughout this section.

Assumption 1. Let A j and V be real-valued and belong to C∞(Rn). Let V be bounded from below.
Assume A = (A j)

n
j=1 is sublinear and V subquadratic, namely,

∂
α A j(x) = O(1), ∀|α| ≥ 1,

∂
αV (x) = O(1), ∀|α| ≥ 2

as |x| → ∞. In addition, assume there exists some ε > 0 such that for all |α| ≥ 1

|∂ α B(x)| ≤ cα〈x〉−1−ε ,

where B = (b jk)n×n, b jk = ∂ jAk−∂kA j.



Define the L -Sobolev space H s,r := {u : ∇su ∈ Lr,〈x〉su ∈ Lr}, where 〈x〉= (1+ |x|2)1/2. When r = 2,
we will also use the abbreviation H 1 = H 1,2. For u0 in H 1, local wellposedness of (1) was proven for
1 ≤ p < 1+ 4/(n− 2) e.g., in [9, 43, 41] based on the fundamental solution constructed in [54]. The H s

subcritical result was considered in [58] for 1≤ p < 1+4/(n−2s). When s = 1, the following are known:
Let u0 ∈H 1, r = p+1 and q = 4p+4

n(p−1) .

1. Let 1≤ p < 1+4/(n−2). Then in the defocusing case µ > 0, (1) has an H 1-bounded global solution
in C(R,H 1)∩ Lq

loc(R,H
1,r). In the focusing case µ < 0, if 1 ≤ p < 1+ 4/d, then (1) has an H 1-

bounded global solution in C(R,H 1)∩Lq
loc(R,H

1,r).
2. Let p = 1+ 4/(n− 2), n ≥ 3. If ‖u0‖H 1 < ε for some ε = ε(n, |µ|) sufficiently small, then (1) has a

unique local solution in C((−T,T ),H 1)∩Lq((−T,T ),H 1,r) for some T > 0.

In two and three dimensions similar results on the H 1 subcritical problem for (4) have been obtained in
[30, 31, 4]. The main theorem (Theorem 1) we state below is the global wellposedness of (1) for L2 initial
data by virtue of the maximal Strichartz norm. This strengthens Theorem 3.3 in [58].

Definition 1. We call (q,r) = (q,r,n) an admissible pair if q,r ∈ [2,∞] satisfy (q,r,n) 6= (2,∞,2) and

2
q
+

n
r
=

n
2
.

Definition 2. Let I ⊂R be an interval. The Strichartz space S0(I) := S0(I×Rn) is a Banach space consisting
of functions in ∩(q,r) admissibleLqLr(I×Rn) satisfying

‖u‖S0(I) := sup
(q,r) admissible

‖u‖LqLr(I×Rn) < ∞.

Define N0(I) to be the linear span of ∪(q,r) admissibleLq′Lr′(I ×Rn), where q′ = q/(q− 1) is the Hölder
conjugate of q. If n≥ 3, the admissible pairs include the endpoint pair (2, 2n

n−2 ), which allows us to identify

S0(I) with L∞L2 ∩L2L
2n

n−2 (I×Rn) through interpolation. In this case N0(I) = L1L2 +L2L
2n

n+2 (I×Rn) and
N0(I) is endowed with the norm

‖ f‖N0(I) = min
f= f1+ f2

(
‖ f1‖L1L2(I×Rn)+‖ f2‖

L2L
2n

n+2 (I×Rn)

)
,

where the infimum is taken over all possible f1 ∈ L1L2(I×Rn) and f2 ∈ L2L
2n

n+2 (I×Rn) such that f = f1+ f2
[36].

Theorem 1. Let A and V satisfy the conditions in Assumption 1. Suppose u0 ∈ L2(Rn).

1. If 1≤ p < 1+4/n, then equation (1) has a unique solution u in C(R,L2(Rn))∩S0
loc(R×Rn). Further-

more, for any R > 0 there exists TR > 0 such that the flow u0 7→ u is Lipschitz continuous from BR into
S0((−TR,TR)).

2. If p = 1+ 4/n, then there exists an ε > 0 such that ‖u0‖2 < ε implies that equation (1) has a unique
solution u in C(R,L2(Rn))∩ S0

loc(R×Rn). The flow u0 7→ u is Lipschitz continuous from Bε/2 into
S0((−T0,T0)).

In both cases, it holds that for all T > 0,

‖u‖S0((−T,T )) ≤ cT.



In the above, BR := {u : ‖u‖2 ≤ R}, T0 = T0(A,V ), and ε and c are constants depending on n, µ and ‖u0‖2
only.

In the focusing (µ < 0), L2 critical or supercritical but energy subcritical regime 1 + 4/n ≤ p < 1 +
4/(n− 2), there can occur finite time blowup solutions for (1), see e.g., [9, 11, 49]. Such situation is more
complicated, where the occurrence of wave collapse is equivalent to the existence of soliton, which depends
on the interaction between linear and nonlinear energies, the expectation of momentum as well as the profile
of the initial data. For the rotating problem (4), wave collapse can occur for either cases where |Ω| � |γ| or
|Ω| � |γ|. In [4] blowup conditions are given in terms of (Ω ·L)V . More recently, Garcia [25] obtained a
general blowup criteria for (1) based on spectral properties of A and V .

It is desirable to observe numerical results that can experimentally verify the theory. In Section 4 we apply
the Strang splitting scheme to find numerical solutions for the GPE (1) in 2D (a cubic NLS) where we take
A = 0 and V (x1,x2) =

1
2 ∑

2
j=1 δ jγ

2
j x2

j , δ j ∈ {±1}. Our algorithm and implementations are based on time-
splitting Fourier-spectral methods developed in [6] and GPELab [27]. Such scheme is stable and has higher
accuracy under appropriate conditions on V and initial data, see [39, 38]. Numerical schemes typically use
spectral or pseudo-spectral method to approximate the solution by discretizing spacial dimensions and then
advancing a time step, while physicists have used e.g., Crank-Nicholson method via Lagrangian variational
techniques [47, 18].

The organization of the remaining of the paper is as follows. In Section 2, the time dependent Gross-
Pitaevskii equation, in particular the electromagnetic GPE, is introduced and formally derived as mean
field approximation for the N-particle state of the BEC. In Section 3, we prove Theorem 1, mainly in the
L2-critical case, concerning global wellposedness of (1). In Section 4, we present numeral simulations to
illustrate the focusing and defocusing nonlinear effects on the wave function of BEC subject to various
anisotropic harmonic potentials.

FORMAL DERIVATION OF THE GROSS-PITAEVSKII EQUATION

In the early stage of quantum mechanics there arose questions concerning fundamental aspects of deco-
herence and measurement theory as well as understanding the correlation between classical and quantum
scattering models. In 1924, Satyendra Nath Bose published a paper describing the statistical nature of light
[8]. Using Bose’s paper, Albert Einstein predicted a phase transition in a gas of noninteracting atoms could
occur due to these quantum statistical effects [20, 21]. This phase transition period, Bose-Einsten Conden-
sation, would allow for a macroscopic number of non-interacting bosons to simultaneously occupy the same
quantum state of lowest energy.

It wasn’t until 1938, with the discovery of superfluidity in liquid helium, that F. London conjectured that
this superfluidity may be one of the first manifestations of BEC. The real breakthrough came in 1995, when
the BEC were produced from a vapor of rubidium, and of sodium atoms [2, 17].

The Gross-Pitaevskii equation (1), p = 3 describes the macroscopic wave functions u of the condensate
in the presence of the magnetic and electric potentials A and V . The nonlinear term results from the mean
field interaction between atoms. The constant µ accounts for the attractive (µ < 0) or repulsive (µ > 0)
interaction, whose sign depends on the chemical elements.

Nowadays BEC can be simulated in the computer and the lab. The rotating BEC, for instance, involves
the decoherence ↔ coherence phase. The angular momentum operator breaks up the beams, hence split
the spectral lines when performing the experiment on silver atoms in normal state. It can help create
quasi-particles so to manipulate or observe not only the macroscopic atoms, but also individual particle.
There are potential applications in higher degree precision for measurement, navigation, computing and
communications.



A formal derivation

We follow a mean-field approach to derive the time-dependent GPE for the N-body system of bosons. At
ultra low temperatures, all bosons exist in identical single-particle state φ(r), r ∈R3 and so we can write the
wave function of the N-particle system as

Ψ(r1,r2, . . . ,rN) =
N

∏
i=1

φ(ri). (7)

The single-particle wave function φ(r) obeys the typical normalization condition∫
R3
|φ(r)|2dr = 1.

Due to the fact that we are dealing with dilute gases, the distance between any two particles in positions r and
r′ is such that the only interaction term is U0δ (r−r′), where δ is the usual Dirac function and U0 =

4π h̄2a
m is

the strength of effective contact interaction (a being the scattering length). Thus the Hamiltonian reads

HN =
N

∑
i=1

[
p2

i
2m

+V (ri)

]
+U0 ∑

i< j
δ (ri− r j),

where p = −ih̄∇ stands for the momentum and V (r) the external potential. Meanwhile the N-state (7) has
energy

EN = N
∫
R3

[
h̄2

2m
|∇φ(r)|2 +V (r)|φ(r)|2 + (N−1)

2
U0|φ(r)|4

]
dr, (8)

where the nonlinear energy term is attributed to the inherent self-interaction and interaction between a pair
of bosons on the same state∫

R6
U0δ (ri− r j)〈φ(ri)|δ (ri− r′i)φ(r

′
i)〉〈φ(r j)|δ (r j− r′j)φ(r

′
j)〉dridr j

=
∫
R6

U0δ (ri− r j)|φ(ri)|2|φ(r j)|2dridr j =
∫
R3

U0|φ(ri)|4dri .

This is equivalent to an expression in terms of the expectation of the collision contact.
Introduce the wave function for the condensed state

ψ(r) = N1/2
φ(r)

so that N =
∫
|ψ|2dr. By a variation argument for EN , similar to (3) we formulate the GPE as N→ ∞

ih̄
∂ψ

∂ t
=− h̄2

2m
∇

2
ψ +V (r)ψ +U0|ψ|2ψ. (9)

Derivation of magnetic NLS. In a similar way we can formally derive (1) for p = 3. Let A ∈ L2
loc(R3,R3),

V : R3→ R. Assume an N-particle weakly interacting condensate of non-relativistic bosons without spin in
the mean field. The Hamiltonian in the electromagnetic frame has the form on R3N

HN =
N

∑
ι=1

(
− h̄

2m
∇

2
A,ι +V (rι)

)
+µ

N

∑
ι< j

g(rι − r j),



where ∇A = ∇− iA is the covariant gradient on R3, V represents the external potential, µg the inherent
potential for a two-body bosons, that is, the interaction between two particles is given by µg(r− r′). Using
the fact that the expectation at (t,r) of the interaction from the ι-th particle is µ

∫
R3 g(r− rι)|ψ(t,rι)|2drι

we arrive at the GPE that decries the wave function of the condensate

ih̄
∂

∂ t
ψ =− h̄2

2m
∆Aψ +V ψ +µ(g∗ |ψ|2)ψ.

In the case g = δ where only local contact interaction from collision is accounted for while other interactions
are neglected in a dilute gas, the equation becomes the standard magnetic cubic NLS.

Remark. The derivation above relies on the fact that the N particles of a dilute gas are condensed in the same
state for which the wave function minimized the energy. The note [28] contains derivation and discussions
of the magnetic GPE in the physical setting. For rigorous derivation of the mean field limit of the N-particle
coherent state as N → ∞ as well as t → ∞ involving ground state trapping and scattering (dispersion) we
refer to [24, 22].

GPE with harmonic potential and angular momentum. In (9), |ψ(t,x)|2 denotes the probability density
of the condensate at (t,x). The coefficient µ measures the strength of interaction and depends on a quantity
called the s-scattering length. It has positive sign (defocusing) for Rb87 , Na23 , H1 atoms, but negative sign
(focusing) for Li7 , Rb85 , Cs133 [53, 11]. The typical example V = 1

2 ∑ j γ2
j x2

j represents an external trapping
potential imposed by a system of laser beams, where γ1,γ2,γ3 are the magnitudes of the frequencies of
the oscillator in three directions. It works as an anisotropic trap that allows one to observe the behavior of
macroscopic waves traveling along a waveguide with varying width or excitations when a BEC is released
from a trap.

With the addition of a rotation term we arrive at the GPE in (4). This equation is viewed as a conservation
for the angular momentum on a quantum level that involves Newton’s law and Lorentz force where the
magnetic field is divergence free. The momentum operator LΩ := iΩ · (x∧∇) with non-vanishing angular
velocity Ω gives rise to vortex lattices in a condensate that supports it in turn, e.g., one can obtain the vortex
lattices of a BEC by setting the Na condensate in rotation using laser beams [3, 42].

The study of BEC as a rotating superfluid leads to the quantization of circulation and quantized vortices.
Physically this makes it impossible for a superfluid to rotate as a rigid body: In order to rotate, it must swirl
[3]. The existence of quantized vortices with such particular pattern has been verified by experiments and
numerics, see e.g., [40, 7] and [1, 16]. They can be observed in a condensate with either optical or magnetic
traps.

THE L2 SOLUTION USING MAXIMAL STRICHARTZ NORM

This section is devoted to the proof of Theorem 1. We let A and V satisfy Assumption 1. A priori, note that
equation (1) has the conservation of mass and energy on its lifespan

‖u(t)‖2 = ‖u0‖2 (10)

E(t) :=
∫
(L u)ūdx+

2µ

p+1

∫
|u|p+1dx

=〈L u,u〉+ 2µ

p+1
‖u‖p+1

p+1 = E(0). (11)



Let u and F be L2∩Lr(Rn)-valued functions in t ∈ I, I an interval in R. If u solves

iut = L u+F(t), u(0) = u0 ∈ L2(Rn), (12)

then the solution can be expressed in an integral form according to Duhamel principle

u = (i∂t −L )−1F

=e−itL u0− i
∫ t

0
e−i(t−s)L F(s)ds. (13)

From [54] we know there exists T0 such that for 0 < |t|< T0 the propagator U(t) := e−itL is given as

U(t) f (x) = (2πit)−n/2
∫

eiS(t,x,y)a(t,x,y) f (y)dy, (14)

where S(t,x,y) is a real solution of the Hamilton-Jacobi equation, both S and a are C1 in (t,x,y) and C∞ in
(x,y), with |∂ α

x ∂
β
y a(t,x,y)| ≤ cαβ for all α,β . Write I := IT0 = [−T0,T0] and LqLr(I×Rn) = Lq

t (I,Lr
x(Rn)).

Lemma 1 (Strichartz estimates [9, 58]). If A and V satisfy Assumption 1, then we have for I = [−T0,T0],
there exist constants cq,cq,q̃ such that

‖U(t) f‖LqLr(I×Rn) ≤ cq‖ f‖2 (15)

‖
∫ t

0
U(t− s)F(s, ·)ds‖LqLr(I×Rn) ≤ cq,q̃‖F‖Lq̃′Lr̃′ (I×Rn)

, (16)

where (q,r),(q̃, r̃) are any admissible pairs, and q′ is the Hölder conjugate of q.

The Strichartz estimates yield the following lemma, consult [51, Chapter 3].

Lemma 2. Let u be a solution of (12). Then for any admissible pairs (q,r), (q̃, r̃) as in Definition 1 we have

‖u‖LqLr(I×Rn) ≤ cq,q̃(‖u0‖2 +‖F‖Lq̃′Lr̃′ (I×Rn)
). (17)

Moreover,

‖u‖S0(I) ≤ cn(‖u0‖2 +‖F‖N0(I)). (18)

Now we begin to prove part (2) in Theorem 1.

Proof of (2) in Theorem 1. (I) Let p = 1+4/n. According to (18), we have

‖u‖S0(I) ≤ cn(‖u0‖2 +‖|u|
4
n u‖N0(I)).

Since N0(I)⊃ ∪(q,r) admissibleLqLr(I×Rn) and q = r = (2n+4)/n are admissible, it follows that

‖|u|
4
n u‖N0(I) ≤ ‖|u|

4
n u‖

L(
2n+4

n )′ (I×Rn)

=‖|u|
n+4

n ‖
L

2n+4
n+4 (I×Rn)

= ‖u‖
n+4

n

L
2n+4

n (I×Rn)
.



Hence we obtain

‖u‖S0(I) ≤ cn(‖u0‖2 +‖u‖
n+4

n
S0(I)). (19)

(II) Let ‖u0‖2 ≤ ε := ηγ = (2cn)
−1−n/4 min(1,(5|µ|)−n/4), where we choose η = (2cn)

−1 and γ =

min((2cn)
−n/4,(10cn|µ|)−n/4). In view of (13) we need to prove that the mapping

Φ(u) :=U(t)u0− iµ
∫ t

0
U(t− s)(|u|p−1u)ds (20)

is a contraction on the closed set Eγ = {u ∈ S0(I) : ‖u‖S0(I) ≤ γ}.
(a) In doing so first we show Φ: Eγ → Eγ . According to (19) we have, for u ∈ Eγ

‖Φ(u)‖S0(I) ≤ cn(‖u0‖2 +‖u‖
n+4

n
S0(I))

≤cnηγ + cn‖u‖S0(I)γ
4/n ≤ γ

2
+

γ

2
= γ.

(b) Then we show that Φ is contraction on Eγ . Note the following inequality: For all p > 1

||u|p−1u−|v|p−1v| ≤ p(max(|u|, |v|))p−1|u− v|
≤p(|u|p−1 + |v|p−1)|u− v|.

Hölder inequality gives, with p = 1+4/n,

‖|u|4/n(u− v)‖
L

2n+4
n+4 (I×Rn)

≤ ‖u− v‖
L

2n+4
n (I×Rn)

‖u‖
4
n

L
2n+4

n (I×Rn)
.

The same type of inequality holds with |u|4/n(u− v) replaced by |v|4/n(u− v).
Hence, applying Lemma 2 we obtain, for p = 1+4/n and q̃ = r̃ = (2n+4)/n

‖Φ(u)−Φ(v)‖S0(I)

=‖µ
∫ t

0
e−i(t−s)L (|u|4/nu−|v|4/nv)ds‖S0(I)

≤|µ|cn‖|u|4/nu−|v|4/nv‖Lq̃′Lr̃′ (I×Rn)

≤p|µ|cn‖u− v‖
L

2n+4
n (I×Rn)

(‖u‖
4
n

L
2n+4

n (I×Rn)
+‖v‖

4
n

L
2n+4

n (I×Rn)
).

It follows that for u,v ∈ Eγ

‖Φ(u)−Φ(v)‖S0(I) ≤Cnγ
4
n ‖u− v‖

L
2n+4

n (I×Rn)
≤ 1

2
‖u− v‖S0(I)

by the choice of γ above, where Cn = 2cn p|µ| . Therefore we have proved that Φ has a fixed point in
the set Eγ . We conclude that if ‖u0‖2 ≤ ε , there exists a unique solution u in L∞([−T0,T0],L2(Rn)) ∩
S0([−T0,T0],Rn). The global in time existence follows from the conservation of the L2 norm (10) by
observing that ε only depends on n and µ .

(III) The Lipschitz continuity is based on iteration of the contraction Φ, see e.g., Proposition 1.38 and
Proposition 3.17 in [51].



Proof of (1) in Theorem 1. Let p < 1+4/n. The proof for the subcritical case follow the same line as for the
critical case but use the following: Choose (q,r) = (q̃, r̃) = ( 4p+4

n(p−1) , p+1) to arrive at

‖Pu−Pv‖S0(I) ≤ cn,p|I|α(4‖u0‖2)
p−1 · ‖u− v‖Lq(I,Lr)

≤1
2
‖u− v‖S0(I),

if choosing T = T (‖u0‖2) > 0 sufficiently small. Here we notice that α = 4−n(p−1)
4 > 0 ⇐⇒ p < 1+

4/n.

Remarks: For A = V = 0 the analogous result was proven in [52, 15, 13] using Lq
t Lr

x norm. The case
where A = 0 and V is subquadratic or quadratic was treated in [44, 11, 12]. The proof presented here is a
modification of the standard argument, see [51].

When 1+4/n≤ p < 1+4/(n−2), Carles [12, Theorem 1.4] shows that if A = 0 and V =− 1
2 |x|

2 (more
generally, V has a stronger repulsive component), then global in time existence and scattering hold in H 1.
Carles’ proof relies on global in time Strichartz estimate where the repulsive component of V produces
exponential decay for U(t) that balances the confining force from its attractive component to control the
nonlinear effects. In the energy critical case p = 1+ 4/(n− 2), Killip, Visan and Zhang proved the GWP
and scattering for radial initial data in H 1 [55, 34].

NUMERICAL SIMULATIONS FOR GPE

The Strang splitting method [50] deals with hyperbolic model problems with second order accuracy for finite
difference schemes, which initially appeared in [35]. For a general nonlinear system one can write

ut = c(t,x,Dα u) = a(t,x,Dα u)+b(t,x,Dα u)

to obtain the following two equations for which u = v+w and

vt = a(t,x,Dα u), wt = b(t,x,Dα u).

In the NLS case this method also has second order stability [39]. Since the splitting scheme can preserve
the structure of the PDE, it also preserves the same conservation quantities (10) and (11) for the numerical
solution as well as the analytic solution.

In this section we apply the Strang splitting algorithm to find numerical solution of the GPE in two
dimensions. By truncation we consider the following equation defined on the rectangle R := [a,b]× [c,d]
with periodic boundary conditions

iψt =−
1
2

∆ψ +V ψ +κ|ψ|p−1
ψ (t,x,y) ∈ [0,T ]× [a,b]× [c,d] (21)

ψ(0,x,y) = ψ0(x,y)
ψ(t,a,y) = ψ(t,b,y), ψ(t,x,c) = ψ(t,x,d); ψx(t,a,y) = ψx(t,b,y), ψx(t,x,c) = ψx(t,x,d).

The algorithm is implemented based on time-splitting trigonometric spectral approximations with fine mesh
grids and time steps. The solutions are computed mainly using GPELab [27] adapted to various cases where
V (x,y) = (±γ2

1 x2± γ2
2 y2)/2, κ > 0 or κ < 0. The initial data is taken as either a gaussian in C∞(R2) or a hat

function in H1(R2).



We summarize the numerical results in Figures 1 to 7 and then provide error analysis in Tables 1 and 2 with
progressively finer and finer mesh sizes and time steps. These errors are relatively very small and yield quite
high accuracy. Relevant error estimates can be found in [39] and equation (26) in [38]. Corresponding to two
type of nonlinear regimes, we will select κ = 1 and κ = −1.9718 for repulsive and attractive interactions,
respectively. Let a = c =−8,b = d = 8. Let h = ∆x = ∆y = (b−a)/M be the meshgrid size and ∆t = T/N
the time step.

A. Defocusing case: κ = 1 > 0. Set the initial data ψ0(x,y) = gσ (x,y) with σ = 1, where

gσ (x,y) :=
1√
σπ

e−(x
2+y2)/2σ . (22)

The following show the figures for the numerical solution ψapprox of (21) on R = [−8,8]2 at different times
in the presence of anisotropic quadratic potentials. The numerical results are in consistence with the theory
that attractive V confines the waves to the ground state while the repulsive V enhances the dispersion or
scattering.

(a) 3d view of |ψ(t,x,y)|2 at t = 2 (b) Top view of |ψ(t,x,y)|2 at t = 2

1: p = 3, Defocusing κ = 1, V = x2+4y2

2 (∆t = 0.01, h = 1
32 )

(a) 3d view of |ψ(t,x,y)|2 at t = 5 (b) Top view of |ψ(t,x,y)|2 at t = 5

2: p = 3, Defocusing κ = 1, V = x2−y2

2
There exists evident dispersion in the y-direction



(a) 3d view of |ψ|2 at t = 5 (b) Top view of |ψ|2 at t = 5

3: p = 3, Defocusing κ = 1, V =− x2+y2

2 (∆t = 0.01, h = 1
16 )

Dispersion exist in both x- and y-directions

B. Focusing case: κ = 1.9718 < 0 with the same gaussian initial data (22). In the mass-critical case
p = 1+ 4/n = 3, the focusing NLS may have finite blowup solution. The physics dictates that a positive
harmonic potential is attractive and confines the cooled bosonic atoms. On the other hand, an inverted
(negative) harmonic potential is repulsive and supports the dispersion which offsets the impact of the
focusing effect.
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4: max(x,y) |ψ|2 vs time, ψ0 = gaussian (p = 3, κ =−1.9718, ε = 0.3, ∆t = 0.01, h = 1
32 )

Now we observe from Figure 4 that if V changes from (x2 + y2)/2ε to −(x2 + y2)/2ε , then the blowup
time has a slight delay at approximately t = 0.35.

C. Initial data equal to the “hat function” ψ0 = h ∈ H1(R2). In Figures 5a and 5b we compare the
density function |ψ|2 for two different initial data, one is given by the gaussian (22) and the other is given
by the “hat function”

h(x,y) = (8−|x|)(8−|y|).

The solutions show that if the magnitude of the frequency is large enough then the inverted harmonic
potential V counteracts the focusing effect which leads to global in time existence. On a quite long time
interval, they both reveal self-similarity (“multifractal-like”) for the density function although h ∈ H1 has a
larger magnitude with low regularity. However with ψ0 being the hat function, |ψ(t,x,y)|2 is more irregular
in temporal and much more singular in spatial variables, see Figure 6.

The numerical results agree with Theorem 1 and [58, Theorem 3.2]. Note that on local time interval the
amplitude of ψ is higher than in the free case V = 0. The lack of the long time decay or scattering may be
due to the fact that equation (21) has a “truncation” version.
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6: |ψ(t,x,y)|2 at t = 5 (ψ0 = hat function, p = 3, ε = 0.3)
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5: max(x,y) |ψ|2 vs time t (κ =−1.9718, ε = 0.3, p = 3)



TABLE 1. Spatial discretization error analysis ‖ψexact −ψapprox‖L2 at
t = 1 on R = [−8,8]2 (Defocusing κ = 1, ε = 1, ∆t = 0.00005, ψ0 = g1)

Potential V h = 1
4 h = 1

8 h = 1
16 h = 1

32

0 2.5353e-05 1.2107e-11 3.4148e-12 1.3345e-11
x2+y2

2ε
1.8215e-05 4.0089e-10 1.7532e-10 8.5637e-11

− x2+y2

2ε
8.7515e-04 9.0129e-06 3.3705e-06 1.5221e-06

x2+10y2

2ε
1.7456e-01 1.3289e-03 7.5563e-10 7.9029e-11

x2−10y2

2ε
2.7557e+00 4.8414e+00 3.5978e+00 5.0977e-02

TABLE 2. Temporal discretization error analysis ‖ψexact−ψapprox‖L2 at t = 1 on R = [−8,8]2

(Defocusing κ = 1, ε = 1, ∆x = ∆y = 1
64 , ψ0 = g1)

Potential V ∆t = 0.01 ∆t = 0.005 ∆t = 0.0025 ∆t = 0.00125 ∆t = 0.000625

0 2.5615e-03 6.3592e-04 1.5871e-04 3.9662e-05 9.9139e-06
x2+y2

2ε
1.3647e-02 3.4068e-03 8.5140e-04 2.1283e-04 5.3203e-05

− x2+y2

2ε
4.9640e-02 1.2426e-02 3.1075e-03 7.7695e-04 1.9425e-04

x2+10y2

2ε
2.7675e-01 6.7647e-02 1.6747e-02 4.1805e-03 1.0447e-03

x2−10y2

2ε
1.3843e+01 4.1819e+00 1.1328e+00 3.1327e-01 5.5413e-02

Tables 1 and 2 show the error analysis between the approximate solution and the exact solution. In both
cases the results have reached good accuracy as well as efficiency. However when we test on the case where
κ =−1.9718 (ε = 0.3, ∆t = 0.00005), the spatial and the temporal error analysis seem to indicate quite big
difference between the use of the gaussian and the use of the hat function. Numerical result shows that in the
focusing case, if ψ0 = h, then the approximation solution ψapprox along with the error ‖ψexact −ψapprox‖L2

becomes larger in short time and the blowup comes sooner with more singularities. Note that the relative
error is not small since ‖ψ(t)‖2 = 1024/3. This might suggests that for numerical purpose one needs to use
smoother initial data in order to maintain the prescribed accuracy, see the discussions in [39, 38].
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(a) Defocusing cubic NLS (p = 3)
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(b) Defocusing quintic NLS (p = 5)

7: max(x,y) |ψ|2 vs time t ∈ [0,5], ψ0 = hat function (κ = 1, V =− x2+y2

2ε
, ε = 0.3)

Conclusion

In the study of the NLS for Bose-Einstein Condensation, the analytic and numerical tools and results
we have applied, discovered and reviewed provide good understanding of the modeling equations. On the
numerical aspect, the Strang splitting method has been shown to be very accurate in many cases [6]. In
the literature this type of splitting schemes apply to a wide range of nonlinear problems including KdV,
Maxwell-Dirac and Zakharov systems, Boltzmann equation and Landau damping [5, 38, 10, 19].

Recent theory informs that when the quadratic potential has only positive frequency, the wave function
exists locally in time and stable, and when V has large negative frequency, then it can counteract the nonlinear
effect. The outcome of the simulations agree with the physics of the BEC under trapping conditions. In
the case where the anisotropic quadratic potential has sufficiently higher negative coefficients we observe a
dissipative pattern over time, similar to that of the defocusing nonlinearity [12, 32]. The focusing nonlinearity
causes an attractive effect on the condensate that can cause it to “blowup”. These are true when ψ0 is a
gaussian. In Figure 5a after short time the linear V starts to take over and there shows scattering like in the
linear periodic case. However, when the initial data has low regularity, we observe singularities over very
short time. Nevertheless, over a quite long time interval the solutions exhibit multi-fractal structure similar
to the linear case [33]. Thus it may be worthwhile to look into the post-blowup behavior of the solutions.

The general understanding is that the BEC mechanism decouples into two states: The ground state from
focusing effect and the dispersion from the repulsive interaction. Considering the recent work on BEC with
rotation or more generally, the NLS with magnetic fields [37, 4, 58], where some questions are quite open,



it would be of interest to continue to study such model under more critical conditions. This investigation, on
the analytic and numerical levels, would help explain how the excited sates are formed and how dispersion
or scattering can be achieved by appropriately manipulating BEC with potentials, the nonlinearities, and
actions of symmetries.
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