Math 1111 — Review Test 1

Name Id \qquad Section

Show your results clearly in order to get possible credits or partial credits. 10 points each.
1.Find the solution of each equation or system if any.
i) $5 x-6=12-10 x$
ii)

$$
\left\{\begin{array}{l}
3 x-2 y=-19 \\
x+4 y=-4
\end{array}\right.
$$

iii) $2 x^{3}-x^{2}-x-3=0$, given that $x=\frac{3}{2}$ as one of its roots.
2. i) Is $(3,-2)$ a solution of the following system ?

$$
\left\{\begin{aligned}
\frac{2}{7} x-\frac{1}{5} y & =\frac{44}{35} \\
\frac{1}{3} x-\frac{5}{4} y & =\frac{7}{2} .
\end{aligned}\right.
$$

ii) The point of intersection of the lines $-7 x+3 y=4$ and $4 x-2 y=3$ is (choose one)
a) $\left(\frac{17}{2}, \frac{29}{2}\right)$
b) $\left(-\frac{17}{2},-\frac{37}{2}\right)$
c) $\left(-\frac{17}{2}, \frac{29}{2}\right)$
d) $\left(\frac{1}{2}, \frac{5}{2}\right)$.
3. Find the domain and range of each function.
(i) $y=\frac{1}{x-1}$
(ii) $y=\sqrt{-5 x+1}$
(iii) $y=-|x|$
(iv) $y=[x]$
(v) $y=\frac{1}{\sqrt{1-x}}$
(vi) $y=\sqrt{\frac{t}{t+1}}$
vii) $y=|x|-\sqrt{-x}$
4. Let $H(x)=1-2 x^{2}$. Find the following:
(i) $H(0)$
(ii) $H(\sqrt{2})$
(iii) $H\left(\frac{5}{6}\right)$
(iv) $H(x+h)$
(v) $\frac{H(x+h)-H(x)}{h}$
5. Compute and simplify
i) $f(2)$ and the difference quotient $\frac{f(x)-f(2)}{x-2}$ for the function $f(x)=\frac{1}{1-x}$
ii) $\frac{g(x+h)-g(x)}{h}(h \neq 0)$ for $g(x)=\sqrt{x+1}$.
6. Specify the domain and the range of the function whose graph is given (The axes are marked off in one-unit intervals).

7. Graph the function. Specify its vertex, all of its intercepts, the domain and the range. i) $y(x)=(x-1)^{2}-4 \quad$ ii) $p(x)=x^{2}-4 x+1$.

8. Let $f(x)=\frac{2}{x+1}$ and $g(x)=x^{2}$. Compute
(i) $f \cdot g$
(ii) f / g
$\left(\right.$ iii $\left.^{*}\right) f^{-1}$
9. Graph the functions. a)

$$
h(x)=[x+2]-2
$$

b)

$$
g(x)= \begin{cases}|x| & \text { if } x<1 \\ -3 x+4 & \text { if } x \geq 1\end{cases}
$$

$\left.c^{*}\right)$ The graph of the function $y=f(x)$ is the line segment joining points $(-2,-2)$ and (2, 1). Sketch and label the graphs of the following functions:
(a) $y=f(-x)$
(b) $y=-f(x)$
(c) $y=f(x+3)$
(d) $y=f(x)+1$

10*. Analyze the function algebraically: List its vertical asymptotes, horizontal asymptote, x-intercepts and y-intercept(if any). Then sketch a complete graph of the function.

$$
y=\frac{400-x^{2}}{(x-100)^{2}}
$$

11. Which point is farther away from the origin: $A(-1,4)$ or $B(3,-2)$?
12. Is the triangle with vertices the origin $O, A(2,4)$ and $B(10,0)$ a right triangle?
13. The coordinates of A and B are $(-1,2)$ and $(5,-3)$, respectively. If B is the midpoint of line segment $A C$, what are the coordinates of C ?
14. Plot the point $(7,-8)$. Does this point lie on the graph of $y^{2}=9 x+1$?
15. Determine whether the graph of the function is symmetric with respect to
(a) the origin
(b) the x-axis
(c) the y-axis.
i) $y^{2}=9 x+1 \quad$ ii) $H(x)=-\frac{3}{x^{2}}+\frac{x^{4}}{9}+8$
16. Determine the center and radius of the circle $x^{2}+y^{2}-8 x+6 y-24=0$.
17. A line passes through points $A(-1,4)$ and $B(3,-2)$. Compute its slope and write out its equation.
18. Give the equation of the line with slope $m=-\frac{2}{3}$ and y-intercept $b=-\frac{5}{3}$.
19. Are the two lines $2 x+3 y=-5$ and $3 x-2 y=5$ parallel or perpendicular or neither?
20. Find the equations of the tangent and normal lines of the circle $x^{2}+y^{2}=25$ passing through $(3,-4)$. Write the answer in the form $y=m x+b$.
21. Jimmy buys a new car for $\$ 21,000$. After 10 years, the car has a salvage value of 2,000. Assuming linear depreciation, find the formula for the value V of the car after t years $(0 \leq t \leq 10)$.
22. (a) The perimeter of a rectangle is 16 cm . Express the area of the rectangle in terms of the width x.
(b) The area of a rectangle is $75 \mathrm{~cm}^{2}$. Express the perimeter as a function of the width x.
23. A baseball is thrown straight up, and its height as a function of time is given by $h=32 t-32 t^{2}$ (here h is in feet and t is in seconds).
(a) Find the height of the ball when $t=\frac{1}{2}$ and when $t=1$.
(b) Find the maximum height of the ball and the time at which that height is attained.
(c) At what time the ball falls to the ground?

24*. Five hundred feet of fencing are available to enclose a rectangular pasture alongside a river, which serves as one side of the rectangle (so only three sides require fencing). Find the dimensions yielding the greatest area.
25. Simplify the expressions. a) $8 i-(7+4 i) \quad$ b) $(5-4 i)^{2}$
c) $\frac{1+3 i}{2-i}$
d) $\frac{-8+\sqrt{-16}}{24}$
e) $\sqrt{-12}(\sqrt{-4}-\sqrt{2})$
26. Solve the following equations. Check your answer if necessary.
a) $x^{2}-12 x+27=0$
b) $2 x^{2}+5 x=3$
c) $\frac{x-1}{4}+\frac{5}{x+1}=2$
d) $3 x^{4}=48 x^{2}$
e) $\sqrt{2 x-3}+x=3$
f) $\sqrt{x-4}+\sqrt{x+1}=5$
g) $(x-7)^{2 / 3}=25$
h) $2 x^{2 / 5}+7 x^{1 / 5}-15=0$
i) $|2 x-5|=11$

Answers to Test 1

3. (i) $x-1 \neq 0$, so $x \neq 1$; Domain: $(-\infty, 1) \cup(1, \infty)$ Range: all real numbers except 0
(ii) Solve $-5 x+1 \geq 0$. Domain: $x \leq 1 / 5$. Range: $y \geq 0$

7 (i). x-int's: 3 and -1 ; y-int: -3 ; domain: $(-\infty,+\infty)$; range: $[-4, \infty) ; y_{\min }=-4 ; y_{\max }$: none; it is decreasing on $(-\infty, 1]$, increasing on $[1,+\infty)$; vertex: $(1,-4)$
8. (a) $f \cdot g=\frac{2 x^{2}}{x+1}$;
(b) $f / g=\frac{2}{x^{2}(x+1)}$
11. $|O A|=\sqrt{17}>\sqrt{13}=|O B|$; so A is farther away from the Origin.
12. $|A B|=\sqrt{80},|O A|=\sqrt{20},|O B|=\sqrt{100}$; so $|O A|^{2}+|A B|^{2}=|O B|^{2}$ and it is a right triangle. Alternatively, we can use the slopes to show $O A \perp A B$, that is, compute $m_{O A} \cdot m_{A B}=-1$
13. $C(7,-8)$.
14. Yes.
15. (i) x-int: $-\frac{1}{9}$; y-int's: ± 1; the graph is symmetric in the x -axis.
16. $C(4,-3) ; r=7$.
17. $m=-\frac{3}{2}$; equation: $3 x+2 y-5=0$ or $y=-\frac{3}{2} x+\frac{5}{2}$.
18. $y=-\frac{2}{3} x-\frac{5}{3}$ or $2 x+3 y+5=0$.
19. $m_{2}=-\frac{3}{2}$; so these two lines are neither parallel nor perpendicular.
21. $V=20,000-1,900 t$.

