Read each problem carefully. Show all your work. Credits will be given mainly depending on your work, not just an answer. Put a box around the final answer to a question. Use the back of the page if necessary.

1 [10] Solve the quadratic equation $2 x^{2}-8 x+3=0$
2 [10] Find the real solution of the equations
a) $x^{6}-7 x^{3}=8$
b) $\sqrt{12-x}=x$ (Check your answer!)
c) $\left|x^{2}+2 x\right|=8$

3 [10] Find the domain of the function $g(x)=\frac{x^{2}-9}{\sqrt{x+3}}$.
4 [10] a) Use the method discussed in class to graph the function $h(x)=-4 x^{2}+12 x+17$.

Vertex \qquad
x-intercept \qquad
y-intercept \qquad

Domain \qquad Range \qquad
Increasing over \qquad Decreasing over
5 [10] For the function $f(x)=32 x^{2}-2 x^{6}$ find:
Completely factored form
Zero \qquad Multiplicity \qquad
X-int \qquad
Y-int \qquad End behavior \qquad
6 [10] a) Graph the rational function $f(x)=\frac{x^{3}+5 x^{2}+6 x}{x^{2}-4}$ (Hint: Factor the numerator and denominator first)
Domain \qquad Range \qquad
Vertical Asymptote \qquad
Horizontal Asymptote \qquad
Slant/Oblique Asymptote \qquad
X-int \qquad
Y-int \qquad
Sign Chart

b) (optional) Write down the formula of a rational function that has a graph with the following properties: Vertical asymptotes of $x=-2$ and $x=3$, zeros at $x=0,2$ and 4 , and a horizontal asymptotes of $y=-1$.
7 [10] Solve the inequality $-2 x^{4}+20 x^{2}-18 \leq 0$.
8 [10] a) Find the inverse of the function $r(x)=\frac{2 x}{x-3}$.
b) Let $f(x)=\sqrt{2 x}$ and $g(x)=\frac{x-1}{x+2}$.
i) Find the domain of $f \circ g$
ii) Find $f^{-1}(x)$
iii) What is the domain and range of $f^{-1}(x)$?
iv) Sketch $f(x)$ and $f^{-1}(x)$ on the same graph.
v) Do the same for $g^{-1}(x)$

9 [10] a) Graph $f(x)=3^{x-1}+1$. Find and label all asymptotes and intercepts.

Domain \qquad Range \qquad
b) Let $u(x)=-3+2^{x-4}$ and $v(x)=4+\log _{2}(x+3)$.
i) Sketch the graph of $u(x)$ by hand using transformations.
ii) Do the same for $v(x)$.
iii) Find the inverse of $v(x)$.

10 [10] a) Evaluate $\log _{4} 1, \log _{4} 4, \log _{4}(1 / 16)$.
b) Given that $\ln x=\frac{1}{2}, \ln y=2$ and $\ln z=3$, evaluate $\ln \left(\frac{x^{8}}{z \sqrt{y}}\right)$.
c) Combine $3 \log _{2}(x+1)+2 \log _{4}(4 x)-\log _{2}(4 x+4)$ into one logarithm (Must be completely simplified for full credits)
d) Write $\ln \left(\frac{\sqrt{x+10}}{(x+4)^{3}}\right)$ as a sum and/or difference of logarithms.

11 [10] a) Solve $2^{3 x+1} 4^{-x}=4^{2}$ for x.
b) Solve $2+7 \cdot 4^{2 x+1}=16$.
c) Solve the logarithmic equation $\log _{4} x-\log _{4}(x-3)=1$.
d) Solve $2+7 \log _{4}(2 x+1)=16$
e) Solve $3^{x+1}=2^{1-x}$ by taking the natural \log of both sides.

12 [10] a) How much should be invested in an account that pays 5% annual interest compounded monthly in order to have $\$ 5000$ in the account after 6 years?
b) What yearly interest rate compounded continuously is required for an investment to double in value after 10 years?

