Review Test 2 Math 1113

Name
Id
Section

Read each problem carefully. Show all your work. Credits will be given mainly depending on your work, not just an answer. Avoid simple mistakes! Put a box around the final answer to a question. Use the back of the page if necessary.
(1) Convert the angle in radian form to degree form. $\mathbf{2 . 8 7}$
a). 1°
b). 05°
c) 164.44°
d) 163.83°
(2) Convert the angle in DMS to radian form. $\mathbf{2 4 2}^{\circ} \mathbf{1 6}^{\prime} \mathbf{1 5}^{\prime \prime}$

$$
\begin{array}{llll}
\text { a) } 242.2^{\circ} & \text { b) } 242.5^{\circ} & \text { c) } 4.228 & \text { d) } 4.229
\end{array}
$$

(3) Let the point $\left(-\frac{1}{3},-\frac{1}{2}\right)$ be on the terminal side of an angle θ. Find $\sin \theta$.
$\begin{array}{ll}\text { a) } \frac{13}{3} & \text { b) } \frac{-3 \sqrt{13}}{13}\end{array}$
c) $\frac{-13}{2}$
d) $\frac{2 \sqrt{13}}{13}$
(4) Find the approximate value of the following. Round each answer to three decimal places (Check MODE).
a) $\csc \left(\frac{\pi}{4}\right)$
b) $\cot (\sqrt{3})$
c) $\tan \left(-24^{\circ}\right)$
d) $\sin ^{-1}\left(\frac{\sqrt{3}}{3}\right)$
e) $\left.\tan ^{-1}(-7) \quad f\right) \cos ^{-1}(0.866)$
(5) Find the exact value of

- $\sin 25^{\circ} / \cos 65^{\circ}$.
- $\cos 75^{\circ}$
- (*optional) $\sin 108^{\circ}$
- $\tan \left(\frac{7 \pi}{8}\right)$
- $\sin ^{-1}\left(\sin \left(\frac{7 \pi}{6}\right)\right)$
- $\tan ^{-1}\left(\tan \left(\frac{5 \pi}{2}-1\right)\right)$
- $\sin \left(\tan ^{-1}(5)\right)$
(6) For what values of $0 \leq x \leq 4 \pi$ does the graph of $h(x)=\sec (x)$ have vertical asymptote. Give exact values.
(7) Given $\tan \theta=3 / 4, \pi<\theta<\frac{3 \pi}{2}$, find $\sin \theta+\sin 2 \theta+\sin \frac{\theta}{2}$
(8) Let $f(x)=3 \cos 2 x$. State the period and amplitude of $f(x)$ and sketch $f(x)$ for $0 \leq x \leq 2 \pi$ label all of the x-intercepts and high and low points of the graph. All values should be exact.

Period \qquad
Amplitude \qquad
X-intercepts \qquad

High point \qquad
Low point \qquad
(9) Verify the following identities. a) $\frac{1+\cos x}{\sin x}+\frac{\sin x}{1+\cos x}=2 \csc x$
b) $\frac{\cos 2 x}{1+\sin 2 x}=\frac{\cot x-1}{\cot x+1}$
c) $\frac{1-2 \cos ^{2} x}{1-2 \sin x \cos x}=\frac{\sin x+\cos x}{\sin x-\cos x}$
d) $[\sin \omega-\cos \theta]^{2}-[\sin \omega+\cos \theta][\sin \omega-\cos \theta]$
$=-2 \cos \theta[\sin \omega-\cos \theta]$
(10) Prove that $\cos x+\sin \left(x-\frac{\pi}{2}\right)=0$
(11) Solve the equation

- $\cos ^{2} x=2 \sin x+2$
- $\cos ^{2} x=\sin x-1$.
- $\sin x \cos x=\frac{1}{4}$
- $\sin 3 x=-1,-\pi \leq x \leq \pi$.
(12) Evaluate $\sin \left(\sin ^{-1}(1 / 3)+\sin ^{-1}(1 / 4)\right)$
(13) A railroad curve is laid out on a circle. What radius should be used if the track is to change direction by 20° in a distance of 100 miles (Round your answer to the nearest mile).
(14) In certain time of the day, the angle of elevation of the sun is 40°. To the nearest foot, find the height of a tree whose shadow is 35 feet long.
(15) Use the information given to find the exact trigonometric value.
- If $\sin x=\sqrt{5} / 3$ and x is an acute angle, find $\tan x$
x is in Quadrant \qquad $\tan x=$ \qquad
- If $\cos \theta=-2 / 9$ and $\tan \theta<0$, find $\csc \theta$.
θ is in Quadrant __ $\csc \theta=$ \qquad
(16) a) Find the reference angle for $\theta=-585^{\circ}$ b) Use the reference angle to evaluate $\tan 210^{\circ} \cos \left(-585^{\circ}\right)$.
(17) Calculate the period, amplitude, and vertical and/or horizontal (phase) shift for the graph of each equation.
a) $y=-6 \sin (2 x-\pi)$ Period \qquad Amplitude \qquad Vertical shift \qquad Phase shift \qquad
b) $y=-3 \cot \left(\frac{x}{3}\right)-4$ Period \qquad Amplitude \qquad Vertical shift \qquad Phase shift \qquad
(18) Sketch the graph of the following functions. Show at least one full period. Label the axes to identify a total of ' 5 Key Points' and/or asymptotes. Be sure to include all information.
a) $y=-3 \cot \left(\frac{x}{3}\right)$ Period \qquad Amplitude \qquad

Graph

b) $y=-20 \sin \left(\frac{\pi}{2} x\right)$ Period___ Amplitude \qquad

Graph

(19) A plane leaves city A and flies straight north for 300 miles. The pilot then flies at a bearing of $N 30^{\circ} W$ for 200 miles to city B. What is the distance between city A and city B?
(20) The eyes of a basketball player are 6 feet above the floor. The player is at the free-throw line, which is 15 feet from the center of the basket rim. What is the angle of elevation from the players eyes to the center of the rim? (Hint: The rim is 10 feet above the floor).
(21) Solve the triangle $\triangle A B C$. State the case and the Law first.

- $a=8, b=10, c=3$.
- $a=9, b=2, B=15^{\circ}$.
- $a=21, B=18^{\circ}, A=72^{\circ}$.
(22) Two ships leave a port at 12 noon one travels with a bearing $N 53^{\circ} \mathrm{W}$ at 10 miles per hour, the other ship travels with a bearing of $S 67^{\circ} W$ at 20 miles per hour. How far apart are the ships at 3PM? (Hint: Draw the picture).
(23) The parallelogram parcel of land shown in the figure is being sold for $\$ 105$ per square foot. Calculate the cost of this parcel. (Hint: Heron' formula for area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$ where s equals one-half of the perimeter $(a+b+c) / 2)$

20

