Read each problem carefully. Show all your work. Credits will be given mainly depending on your work, not just an answer. Avoid simple mistakes! Put a box around the final answer to a question. Use the back of the page if necessary.

- (1) Convert the angle in radian form to degree form. 2.87 $a).1^{\circ} b).05^{\circ} c)164.44^{\circ} d)163.83^{\circ}$
- (2) Convert the angle in DMS to radian form. $242^{\circ}16'15''$ $a)242.2^{\circ} \ b)242.5^{\circ} \ c)4.228 \ d)4.229$
- (3) Let the point $\left(-\frac{1}{3}, -\frac{1}{2}\right)$ be on the terminal side of an angle θ . Find $\sin \theta$.

$$a)\frac{13}{3}$$
 $b)\frac{-3\sqrt{13}}{13}$ $c)\frac{-13}{2}$ $d)\frac{2\sqrt{13}}{13}$

(4) Find the approximate value of the following. Round each answer to three decimal places (Check MODE).

a)
$$\csc(\frac{\pi}{4})$$
 b) $\cot(\sqrt{3})$ c) $\tan(-24^{\circ})$
d) $\sin^{-1}(\frac{\sqrt{3}}{3})$ e) $\tan^{-1}(-7)$ f) $\cos^{-1}(0.866)$

- (5) Find the exact value of
 - $\sin 25^\circ / \cos 65^\circ$.
 - $\cos 75^\circ$
 - (*optional) $\sin 108^{\circ}$

 - $\tan(\frac{7\pi}{8})$ $\sin^{-1}(\sin(\frac{7\pi}{6}))$ $\tan^{-1}(\tan(\frac{5\pi}{2}-1))$
 - $sin(tan^{-1}(5))$
- (6) For what values of $0 \le x \le 4\pi$ does the graph of $h(x) = \sec(x)$ have vertical asymptote. Give exact values.
- (7) Given $\tan \theta = 3/4$, $\pi < \theta < \frac{3\pi}{2}$, find $\sin \theta + \sin 2\theta + \sin \frac{\theta}{2}$

(8) Let $f(x) = 3\cos 2x$. State the period and amplitude of f(x)and sketch f(x) for $0 \le x \le 2\pi$ label all of the x-intercepts and high and low points of the graph. All values should be exact. Period _ Amplitude _____

```
X-intercepts _____
```

High point _____ Low point _____

(9) Verify the following identities. a) $\frac{1+\cos x}{\sin x} + \frac{\sin x}{1+\cos x} = 2\csc x$ b) $\frac{\cos 2x}{1+\sin 2x} = \frac{\cot x - 1}{\cot x + 1}$ c) $\frac{1-2\cos^2 x}{1-2\sin x\cos x} = \frac{\sin x + \cos x}{\sin x - \cos x}$ d) $[\sin \omega - \cos \theta]^2 - [\sin \omega + \cos \theta][\sin \omega - \cos \theta]$ $= -2\cos \theta [\sin \omega - \cos \theta]$ (10) Prove that $\cos x + \sin(x - \frac{\pi}{2}) = 0$ (11) Solve the equation • $\cos^2 x = 2\sin x + 2$ • $\cos^2 x = \sin x - 1$. • $\sin x \cos x = \frac{1}{4}$ • $\sin 3x = -1, -\pi \le x \le \pi$. (12) Evaluate $\sin (\sin^{-1}(1/3) + \sin^{-1}(1/4))$ (13) A railroad curve is laid out on a circle. What radius should be used if the track is to change direction by 20° in a distance of 100 miles (Round your answer to the nearest mile). (14) In certain time of the day, the angle of elevation of the sun is 40° . To the nearest first, find the height of a trace where she down

- 40°. To the nearest foot, find the height of a tree whose shadow is 35 feet long.
- (15) Use the information given to find the exact trigonometric value.
 - If $\sin x = \sqrt{5}/3$ and x is an acute angle, find $\tan x$ x is in Quadrant _____ $\tan x = _$ ____
 - If $\cos \theta = -2/9$ and $\tan \theta < 0$, find $\csc \theta$. θ is in Quadrant _____ $\csc \theta =$ _____
- (16) a) Find the reference angle for $\theta = -585^{\circ}$ b) Use the reference angle to evaluate $\tan 210^{\circ} \cos(-585^{\circ})$.
- (17) Calculate the period, amplitude, and vertical and/or horizontal (phase) shift for the graph of each equation.
 a) y = -6 sin(2x π) Period_____ Amplitude ______
 Vertical shift _____ Phase shift ______
 b) y = -3 cot(^x/₃) 4 Period_____ Amplitude ______
 Vertical shift _____ Phase shift ______
- (18) Sketch the graph of the following functions. Show at least one full period. Label the axes to identify a total of '5 Key Points' and/or asymptotes. Be sure to include all information.
 a) y = -3 cot(^x/₃) Period_____ Amplitude _____
 Graph

b) $y = -20\sin(\frac{\pi}{2}x)$ Period_____ Amplitude _____ Graph

- (19) A plane leaves city A and flies straight north for 300 miles. The pilot then flies at a bearing of $N30^{\circ}W$ for 200 miles to city B. What is the distance between city A and city B?
- (20) The eyes of a basketball player are 6 feet above the floor. The player is at the free-throw line, which is 15 feet from the center of the basket rim. What is the angle of elevation from the players eyes to the center of the rim? (Hint: The rim is 10 feet above the floor).
- (21) Solve the triangle $\triangle ABC$. State the case and the Law first.
 - a = 8, b = 10, c = 3.
 - $a = 9, b = 2, B = 15^{\circ}$.
 - $a = 21, B = 18^{\circ}, A = 72^{\circ}.$
- (22) Two ships leave a port at 12 noon one travels with a bearing $N53^{\circ}W$ at 10 miles per hour, the other ship travels with a bearing of $S67^{\circ}W$ at 20 miles per hour. How far apart are the ships at 3PM? (Hint: Draw the picture).
- (23) The parallelogram parcel of land shown in the figure is being sold for \$105 per square foot. Calculate the cost of this parcel. (Hint: Heron' formula for area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ where s equals one-half of the perimeter (a+b+c)/2)

