Review Final Math 1113

Read each problem carefully. Show all your work. Credits will be given mainly depending on your work, not just an answer. Avoid simple mistakes! Put a box around the final answer to a question. Use the back of the page if necessary.
(1) Solve the following equations.
a) $3 x^{2}-7 x-4=0$ by completing the square.
b) $x^{2}+x+1=0$
c) $-x^{3}+2 x^{2}+3 x-6=0$
(2) Solve the system by the substitution or elimination method.

Show all steps and describe in your own words what you are doing at each step.
a)

$$
\left\{\begin{array}{l}
2 x+y=18 \\
x-2 y=6
\end{array}\right.
$$

b)

$$
\left\{\begin{array}{l}
2 x+2 y-2 z=10 \\
2 x+4 y+8 z=-8 \\
10 x+10 y-2 z=-6
\end{array}\right.
$$

(3) Sketch the graphs for the following functions.
a) $f(x)=x^{2}+x+1$. (Indicate vertex and intercept(s))
b) $g(x)=2^{x}-3$ (Indicate asymptote)
c) $h(x)=3 \sin 2 x$ (Indicate period and amplitude)
(4) Find the exact value of
a) $\log _{5}(125)-3 \ln \left(e^{4}\right)$
b) $\sin 15^{\circ}$
c) $\frac{\cos 15^{\circ}}{\sin 75^{\circ}}$
d) $\sin \left(\frac{5 \pi}{7}\right)-\sin \left(\frac{2 \pi}{7}\right)$
e) $\tan \frac{\pi}{8}$
f) $\cot 18^{\circ} \tan 18^{\circ}$
(5) Solve the following equations.
a) $\frac{2}{x}=\frac{3}{x-2}-1$
b) $\sqrt{2 x+6}-\sqrt{x+4}=1$
c) $2 \cos x=-1$
d) $e^{2 x}-3 e^{x}+2=0$
e) $\ln (x-2)+\ln (2 x-3)=2 \ln x$
(6) Show the identities.
a) $\cos 2 x=2 \cos ^{2} x-1$ (Hint: $\cos (\alpha+\beta)=\cos \alpha \cos \beta-$ $\sin \alpha \sin \beta$)
b) $\frac{1-\sin x}{1+\sin x}=(\sec x-\tan x)^{2}$
(7) Solve the triangle $\triangle A B C$. State the case and the Law first.

- $a=10, b=6, B=15^{\circ}$.
- $a=\sqrt{17}, b=\sqrt{17}, C=60^{\circ}$.
- $a=22, B=36^{\circ}, A=72^{\circ}$.
(8) Two ships leave a port at 12 noon one travels with a bearing $N 53^{\circ} \mathrm{W}$ at 10 miles per hour, the other ship travels with a bearing of $S 67^{\circ} W$ at 20 miles per hour. How far apart are the ships at 3PM? (Hint: Draw the picture).
(9) Use point plotting and/or parameter elimination method to graph the plane curve described by the given parametric equations. Use arrow to show the orientation of the curve corresponding increasing values of t.
a) $x=4 \sin t+2, y=4 \cos t-1, \pi / 2 \leq t \leq 3 \pi / 2$
b) $x=t^{2}, y=t^{3},-\infty<t<\infty$ (Section 10.5\#17)
c*) [Bonus] $x=3(t-\sin t), y=3(1-\cos t), 0 \leq t<2 \pi$ (Hint: The cycloid which is traced out by a fixed point on a wheel of radius $R=3$ rolling along a horizontal line).

