Chapter 1. Differentiation.
1.1 Limits: A Numerical and Graphical Approach
1.2 Algebraic Limits and Continuity

- [Review section (continued)] Power Functions with Rational Exponents
(32) Definition. Let m and n be positive integers. Then

$$
a^{m / n}=\sqrt[n]{a^{m}}, \quad a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{\sqrt[n]{a^{m}}}
$$

(33) Rewrite $\sqrt[3]{x}, \sqrt{x^{3}}$, and $\frac{1}{\sqrt[4]{r^{5}}}$ as an equivalent expression with rational exponents.
(34) Simplify $8^{2 / 3}$ and $9^{3 / 2}$.

- Supply and Demand Functions*
(35) * Let x be the unit price of some product. Let $q=D(x)$ be a decreasing function that models the demand and $q=S(x)$ be an increasing function that models the supply. The point of intersection of the two curves, denoted $\left(X_{E}, q_{E}\right)$, is called the equilibrium point.
(36) * Find the equilibrium point for each pair of demand and supply functions.
(a) Demand: $q=D(x)=3-x ; \quad$ Supply: $q=S(x)=\sqrt{2 x+2}$
(b) Demand: $q=D(x)=4 / x ; \quad$ Supply: $q=S(x)=x / 4$
(c) Demand: $q=D(x)=8800-30 x$; Supply: $q=S(x)=7000+15 x$

- Limit of A Function

(37) Let $f(x)=x^{2}+1$. We will find out what value does $f(x)$ approach as x approaches 1.
(a) First let x approach 1 from the left. Compute $f(0.9), f(0.99), f(0.999)$, and $f(0.9999)$.
(b) Next let x approach 1 from the right. Compute $f(1.1), f(1.01), f(1.001)$, and $f(1.0001)$.
(38) Redo Problem 37 with function $f(x)= \begin{cases}x+2, & \text { for } x \geq 1, \\ \sqrt{3+x}, & \text { for } x<1 .\end{cases}$
(39) Definition. As x approaches a (from both sides), the limit of $f(x)$ is L, written $\lim _{x \rightarrow a} f(x)=L$, if all values of $f(x)$ are close to L for values of x that are sufficiently close, but not necessarily equal, to a. The limit L, if it exists, must be a unique real number.

We write $\lim _{x \rightarrow a^{-}} f(x)$ to indicate the limit from the left (i.e. $x<a$), and $\lim _{x \rightarrow a^{+}} f(x)$ to indicate the limit from the right (i.e. $x>a$), if we want to specify the side from which x-values approach a. These are called left-hand limits and right-hand limits, respectively.
(40) Theorem. As x approaches a, the limit of $f(x)$ is L if and only if the left-hand and right-hand limits exist and are equal to L.
(41) Let $f(x)=\frac{x^{2}-4}{x-2}$.
(a) Does $f(2)$ exist?
(b) Compute $f(1.9), f(1.99), f(1.999)$, and $f(1.9999)$.
(c) Compute $f(2.1), f(2.01), f(2.001)$, and $f(2.0001)$.
(d) What is $\lim _{x \rightarrow 2} f(x)$?
(42) Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & \text { for } x \neq 2, \\ -1, & \text { for } x=2 .\end{array}\right.$ Find $f(2)$ and $\lim _{x \rightarrow 2} f(x)$.
(43) The graph of the function $y=f(x)$ on $-3 \leq x \leq 3$ is given as below.

Find the values of $f(-1), f(0), f(1), f(2), \lim _{x \rightarrow-1^{-}} f(x), \lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow 1^{+}} f(x)$, and $\lim _{x \rightarrow 2} f(x)$, if they exist.
(44) Let $f(x)=\frac{1}{(x-1)^{3}}$.
(a) First let x approach 1 from the left. Compute $f(0.9), f(0.99), f(0.999)$, and $f(0.9999)$.
(b) Next let x approach 1 from the right. Compute $f(1.1), f(1.01), f(1.001)$, and $f(1.0001)$.
(45) Let $f(x)=\frac{x}{x^{2}+1}$.
(a) First let x approach ∞. Compute $f(100), f(1000), f(10000)$, and $f(100000)$.
(b) Next let x approach $-\infty$. Compute $f(-100), f(-1000), f(-10000)$, and $f(-100000)$.

Videos on Chapter 1:Differentiation from MLM Plus

