Chapter 1. Differentiation.
1.3* Average Rates of Change
1.4 Differentiation Using Limits and Difference Quotients
1.5 Leibniz Notation and The Power and Sum-Difference Rules (Part I. The Power Rule)

- Algebraic Limits
(46) Find the limits.
(a) $\lim _{x \rightarrow-1}\left(2 x^{2}-4 x+4\right)$
(b) $\lim _{x \rightarrow-3} \frac{x^{2}+2 x+2}{x-x^{3}}$
(c) $\lim _{x \rightarrow-3} \sqrt{\frac{x^{2}+2 x+2}{x-x^{3}}}$
(47) Find the limits.
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x^{2}-1}$
(b) $\lim _{x \rightarrow-3} \frac{x+3}{x^{2}+4 x+3}$
(c) $\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x^{2}-5 x+4}$
- Continuity
(48) Definition. A function f is continuous at $x=a$ if: (a) $f(a)$ exists, (b) $\lim _{x \rightarrow a} f(x)$ exists, and (c) $\lim _{x \rightarrow a} f(x)=f(a)$.

A function is continuous over an interval I if it is continuous at each point a in I. If f is not continuous at $x=a$, we say that f is discontinuous, or has a discontinuity, at $x=a$.
(49) The graph of the function $y=f(x)$ is given as follows. At what points of x is f not continuous?

(50) Determine whether the function is continuous at the given point.
(a) $f(x)=x^{3}+2 x, \quad$ at $x=2$
(b) $f(x)=\left\{\begin{array}{ll}2 x-3, & \text { for } x \geq 3, \\ 12-x^{2}, & \text { for } x<3,\end{array}\right.$ at $x=3$
(c) $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x-1}, & \text { for } x \neq 1, \\ 2, & \text { for } x=1,\end{array} \quad\right.$ at $x=1$

- Difference Quotient and Derivatives

(51) The following table shows total production of suits at a company during one morning work. What was the average number of suits produced per hour from 9 am to 11 am?

Time (number of hours since 8 am)	0	1	2	3	4
Total number of suits produced	0	20	55	64	100

(52) Definition. The average rate of change of $f(x)$ with respect to x is also called the difference quotient. It is given by

$$
\frac{\Delta y}{\Delta x}=\frac{\Delta f(x)}{\Delta x}:=\frac{f(x+h)-f(x)}{h}, \quad \text { where } h \neq 0
$$

(53) For $f(x)=x^{2}$, find the difference quotient for $x=1$ and
(a) $h=1, h=0.5, h=0.2$, and $h=0.1$ (h approaches 0 from the right)
(b) $h=-1, h=-0.5, h=-0.2$, and $h=-0.1$ (h approaches 0 from the left)
(54) Definition. For a function $y=f(x)$, its derivative at x is the function f^{\prime} (also written as $\frac{d y}{d x}$ or $\left.\frac{d f(x)}{d x}\right)$ defined by

$$
f^{\prime}(x)=\frac{d f(x)}{d x}:=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists. If $f^{\prime}(x)$ exists, then we say that f is differentiable at x. The process of finding a derivative is called differentiation.

Geometrically, the derivative of f at x is the slope of the tangent line at $(x, f(x))$. This limit is also called the instantaneous rate of change of f at x.
(55) For each function $f(x)$, first find $f^{\prime}(x)$, then find $f^{\prime}(-3)$ and $f^{\prime}(2)$.
(a) $f(x)=4 x-2$
(b) $f(x)=\frac{1}{x}$
(c) $f(x)=x^{2}$

Section 1.5. (Part I) The power rule.

Let n be a real number.

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

for all x in the domain of the function $f(x)=x^{n}$

Constant multipler Rule:
$\frac{d}{d x}(c f(x))=c \frac{d}{d x} f(x)$
or $\quad(c f(x))^{\prime}=c f^{\prime}(x)$

Ex. Find an equation of the tangent line to the graph of $f(x)=-2 x^{3}$ at $(-1,2)$
[Answer] The equation of the tangent line is $y=-6 x-4$

Solution. The slope of the tangent line is equal to the derivative at $x=-1$:

$$
y^{\prime}(-1)=f^{\prime}(-1)=-\left.6 x^{2}\right|_{x=-1}=-6
$$

By the slope-point form of the line equation we have

$$
y-2=(-6)(x-(-1))
$$

Simplify :

$$
y=-6 x-4 .
$$

