Contents of Chapter 1, Sections 1.5-1.8
1.5 Leibniz Notation and The Power and Sum-Difference Rules
1.6 The Product and Quotient Rules
1.7 The Chain Rule
1.8* Higher-Order Derivatives

- Differentiation Rules

(56) Differentiate the following functions.
(a) $y=x^{5}-2 x+2 \sqrt{x}-7$
(b) $y=4 x^{3}+3 x^{2}+\frac{9}{\sqrt[3]{x^{2}}}$
(c) $y=\frac{4}{x^{3}}-x+5$
(57) Find an equation of the tangent line to the graph of $f(x)=\sqrt{x}-x$ at the point $(4,-2)$.
(58) Differentiate the following functions.
(a) $y=\left(x^{2}+x-1\right)(5 x-\sqrt{x})$
(b) $y=4 x^{2}\left(x^{5}-x\right)$
(c) $y=\frac{x^{3}+3 x^{2}}{x-1}$
(59) The population P (in thousands) of a town is given by $P(t)=\frac{500 t}{2 t^{2}+9}$, where t is the time (in years).
(a) Find the population after 12 years.
(b) Find the population growth rate at $t=12$ years.

- 1.7. The Chain Rule
(60) Definition. The composed function $f \circ g$, the composition of f and g, is defined as $(f \circ g)(x)=f(g(x))$.
(61) For $f(x)=x^{3}$ and $g(x)=3 x+4$, find $f \circ g$ and $g \circ f$.

Summary of C.R. in the following Table

$$
\begin{aligned}
& \text { power chain rule } \\
& \frac{d}{d x}\left(f(x)^{n}\right)=n(f(x))^{n-1} \cdot f^{\prime}(x) \\
& \text { general chain rule } \\
& \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

gear demonstration

Figure: Chain of gears (courtesy of martahidegkuti)

Proof of the Chain Rule. Let $f(u)$ be differentiable at $u=g(c)$, and let $g(x)$ be differentiable at $x=c$. Then

$$
\begin{aligned}
& \left.\frac{d}{d x} f(g(x))\right|_{x=c}=\lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{x-c} \\
= & \lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{g(x)-g(c)} \cdot \frac{g(x)-g(c)}{x-c} \\
= & f^{\prime}(g(c)) \cdot g^{\prime}(c) .
\end{aligned}
$$

Reference on Chain Rule

(62) Differentiate the following functions.
(a) $y=(3 x+4)^{3}$
(b) $y=\sqrt[3]{5-x^{3}}$
(c) $y=\frac{1}{\left(2 x^{2}-x\right)^{4}}$
(d) $y=\sqrt{6 x+1}$
(e) $y=\frac{1}{\sqrt{6 x+1}}$
(63) A new phone is released on the market. Its quantity sold N is given as a function of time t, in weeks, by $N(t)=\frac{10,000 t^{2}}{(2 t+3)^{2}}$. Find $N^{\prime}(t)$. Then find $N^{\prime}(20)$ and $N^{\prime}(200)$.

- Higher-Order Derivatives*

(64) Find the second derivative of the following functions.
(a) $y=x^{5}-8 x^{7}+9 x$
(b) $y=1 / x$
(65) Definition. The velocity $v(t)$ and acceleration $a(t)$ of an object that is $s(t)$ units from a starting point at time t are given by $v(t)=s^{\prime}(t)$ and $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$.
(66) Suppose that a ball is dropped from the 86th floor observation deck of the Empire State Building, 320 meters above the ground. Let t denote time (in seconds) and $s(t)$ denote the distance fallen after t seconds (in meters). Then Galileo's law is expressed by $s(t)=4.9 t^{2}$. Find the velocity and acceleration of the ball at $t=3$.
(67) Given $s(t)=-t^{3}+4 t-2$, where $s(t)$ is in meters and t is in seconds, find the velocity and acceleration at $t=1$.

Videos on Chapter 1:Differentiation from MLM Plus

