- Elasticity of Demand

(84) A DVD rental company has found that demand for rentals of its DVDs is given by $q=D(x)=120-20 x$, where q is the number of DVDs rented per day at x dollars per rental. Suppose that the price per rental is currently $\$ 2$.
(a) Find the demand per day.
(b) If the price per rental is raised by 10%, then how much drop is it in demand?
(c) How much does the total revenue change?
(d) Now assume the current price per rental is $\$ 4$. Do (a)-(c) again.
(85) Definition. The elasticity of demand E is given as a function of price x by

$$
E(x)=-\frac{x \cdot D^{\prime}(x)}{D(x)}
$$

(86) Now let us revisit Problem 84.
(a) Find the elasticity of demand E as a function of x. Then find the elasticity at $x=2$ and at $x=4$.
(b) Find the value of x for which $E(x)=1$.
(c) Find the total revenue R as a function of x. Then find the price x at which the total revenue is a maximum.
(87) Theorem. Total revenue is increasing at those x-values for which $E(x)<1$, is decreasing at those x-values for which $E(x)>1$, and is maximized at the value(s) of x for which $E(x)=1$.
(88) Definition. The demand is inelastic if $E(x)<1$, has unit elasticity if $E(x)=1$, and is elastic if $E(x)>1$.

Chapter 2.
2.1 Exponential and Logarithmic Functions of the Natural Base e
2.2 Derivatives of Exponential (Base-e) Functions
2.3 Derivatives of Natural Logarithm Functions
2.4* Applications: Uninhibited and Limited Growth Models
2.5* Applications: Decay

- Exponential Functions
(89) Definition. An exponential function f is given by $f(x)=a_{0} \cdot a^{x}$, where x can be any real number, a_{0} is a real number, and $a>0$ and $a \neq 1$. The number a is the base.
(90) Graph $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$.
(91) Definition. We call $e=\lim _{h \rightarrow 0}(1+h)^{1 / h} \approx 2.718281828459$ the natural base.
(92) Differentiate the following functions.
(a) $y=5 e^{x}$
(b) $y=x^{4} e^{x}$
(c) $y=\frac{e^{x}}{x^{4}}$
(d) $y=e^{-x}$
(e) $y=e^{-x^{3}+x-3}$

- Logarithmic Functions

(93) Definition. For $a>0$ and $a \neq 1$, a logarithm $y:=\log _{a} x$ means $a^{y}=x$. The number a is called the logarithmic base. If $a=e$, then $\log _{e} x$ is called the natural logarithm of x (abbreviated $\ln x$).
(94) Solve for x.
(a) $\log _{3} 27=x$
(b) $\log _{x} 64=3$
(c) $\log _{6} x=-1$
(d) $e^{-0.25 x}=0.58$
(95) Theorem. The function $\ln x$ exists only for positive numbers x. The domain is $(0, \infty)$. When $0<x<1, \ln x<0$. When $x=1, \ln x=0$. When $x>1, \ln x>0$. The function $\ln x$ is an increasing function. The range is the entire real line $(-\infty, \infty)$.
(96) Theorem. $\frac{d}{d x} \ln x=\frac{1}{x}, \quad \frac{d}{d x} \ln |x|=\frac{1}{x}$.
(97) Differentiate the following functions.
(a) $y=8 \ln x$
(b) $y=x^{4} \ln x$
(c) $y=\frac{\ln x}{x^{4}+1}$
(d) $y=\ln \left(6 x^{2}-3 x\right)$

- Exponential Growth and Decay
(98) Theorem. A function $P=P(t)$ satisfies $P^{\prime}=k P$ if and only if $P=C e^{k t}$ for some constant C. If $k>0, P$ is said to grow exponentially. If $k<0, P$ is said to decay exponentially.
(99) Suppose P_{0}, in dollars, is invested in the Von Newmann Hi-Yield Fund, with interest compounded continuously at 7% per year. That is, the balance P grows at the rate $P^{\prime}=0.07 P$.
(a) Find the function that satisfies the equation.
(b) Suppose that $\$ 100$ is invested. What is the balance after one year?
(c) In what period of time will an investment of $\$ 100$ double itself?
(100) A person wants to make an initial investment P_{0} that will grow to $\$ 100,000$ in 10 years. Suppose the interest is compounded continuously at 4% per year. What should the initial investment be?

Videos on Chapter 2:Exp and Log functions from MLM Plus

