Chap. 4 Integration
4.1 Antidifferentiation
4.2 Antiderivatives as Areas
4.3 Area and Definite Integrals
4.4 Properties of Definite Integrals: Additive Property, Average Value and Moving Averages 4.5* Integration Techniques: Substitution
4.6* Integration Techniques: Integration by Parts
4.7* Numerical Integration

- §4.1 Antidifferentiation
(101) Definition. A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I. The process of recovering a function F from its derivative f is called antidifferentiation.
(102) Determine whether $F(x)$ is an antiderivative of $f(x)=e^{2 x}+x$.
(a) $F(x)=e^{2 x}+\frac{x^{2}}{2}$
(b) $F(x)=\frac{1}{2}\left(e^{2 x}+x^{2}\right)$
(c) $F(x)=\frac{1}{2}\left(e^{2 x}+x^{2}\right)+2016$
(103) §4.1, Question \# 21. Evaluate $\int\left(3 x^{-1}+6 x^{-4}\right) d x$.

Solution. Step 1. Split the integral into two parts $\int 3 x^{-1}+\int 6 x^{-4}$.
Step 2. Evaluate each of the two integrals (or anti-derivatives).
$\int 3 x^{-1} d x=3 \int x^{-1} d x=3 \ln |x|$ (by the formula the anti-derivative of $1 / x$ is $\ln |x|+$ C). (logarithm rule for integration)

For the second part, $\int 6 x^{-4} d x=6 \int x^{-4} d x$.
Since $\int x^{-4}=\frac{x^{-4+1}}{(-4+1)}+C=\frac{x^{-3}}{-3}+C$, (power rule for integration),
it follows that

$$
\begin{aligned}
\int 6 x^{-4} d x & =6 \int x^{-4} d x \\
= & 6 \frac{x^{-3}}{-3}+C=(-2) x^{-3}+C=-\frac{2}{x^{3}}+C .
\end{aligned}
$$

Step 3. Finally we combine the two above to obtain

$$
\int\left(\frac{3}{x}+\frac{6}{x^{4}}\right) d x=3 \ln |x|-\frac{2}{x^{3}}+C
$$

This completes the calculation.
(104) Antidifferentiate the following functions.
(a) $f(x)=\frac{1}{\sqrt{x}}+5 x^{3}$
(b) $f(x)=e^{3 x}$
(c) $f(x)=\frac{3 x^{4}-2 x^{2}+x-1}{x^{2}}$
(105) Find an antiderivative $F(x)$ of $f(x)=8 x^{3}-2 x^{2}$ that satisfies $F(-1)=2$.
(106) A ceramics company determines that the marginal revenue, R^{\prime}, in dollars per unit, from selling the x th vase is given by $R^{\prime}(x)=x^{2}-1$. Find the total revenue after 3 units were sold.

- Area and Definite Integrals
(106) Theorem. Let f be a nonnegative continuous function on $[a, b]$, and let $A(x)$ be the area between the graph of f and the x-axis over $[a, x]$, with $a<x<b$. Then $A(x)$ is a differentiable function of x and $A^{\prime}(x)=f(x)$.
(107) Find the area under the graph of $f(x)=3 x^{2}+x$ over [1, 4].
(108) Definition. Let f be a continuous function on $[a, b]$ and F be any antiderivative of f. Then the definite integral of f from a to b is $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
(109) Evaluate the definite integrals.
(a) $\int_{-2}^{3}\left(x^{2}-2 x+3\right) d x$
(b) $\int_{0}^{3} e^{-3 x} d x$
(c) $\int_{1}^{2} \frac{x^{4}-x}{x^{2}} d x$
(d) $\int_{-5}^{-1} \frac{1}{x} d x$
(110) Northeast Airlines determines that the marginal profit resulting from the sale of x seats on a jet traveling from Atlanta to Kansas City, in hundreds of dollars, is given by $P^{\prime}(x)=\sqrt{x}-6$. Find the total profit when 60 seats are sold.
- Substitution
(111) Find the integrals.
(a) $\int\left(x^{3}+1\right)^{4} x^{2} d x$
(b) $\int \frac{1}{5 x+7} d x$
(c) $\int x^{3} e^{-x^{4}} d x$
(d) $\int_{1}^{e} \frac{(\ln x)^{2}}{x} d x$
(e) $\int_{0}^{1} \sqrt{8-3 x} d x$
(f) $\int_{0}^{3}(x-5)^{2} d x$
- Consumer Surplus and Producer Surplus
(112) Definition. Let $p=D(x)$ be the demand function for a product. Then the consumer surplus for Q units of the product, at a price per unit P, is

$$
\int_{0}^{Q} D(x) d x-Q P
$$

Let $p=S(x)$ be the supply function for a product. Then the producer surplus for Q units of the product, at a price per unit P, is

$$
Q P-\int_{0}^{Q} S(x) d x
$$

The equilibrium point is the point at which the supply and demand curves intersect.
(113) In the following problems, $D(x)$ is the price, in dollars per unit, that consumers will pay for x units of an item, and $S(x)$ is the price, in dollars per unit, that producers will accept for x units. Find the equilibrium point, the consumer surplus at the equilibrium point, and the producer surplus at the equilibrium point.
(a) $D(x)=-\frac{5}{6} x+9, S(x)=\frac{1}{2} x+1$
(b) $D(x)=(x-4)^{2}, S(x)=x^{2}+2 x+6$
§4.5* (optional*) Substitute formula: Let f be continuous in (a, b) and let g be continuous and differentiable in (a, b). Then the substitution formula holds:

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

where $u=g(x), d u=g^{\prime}(x) d x$ is the substitution.
For definite integral, we have

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

where $u=g(x), d u=g^{\prime}(x) d x$ is the substitution.

