Chapter R. Functions, Graphs, and Models
R. 4 Slope and Linear Functions
R.5* Nonlinear Functions and Models
R. 6 Exponential and Logarithmic Functions
R.7* Mathematical Modeling and Curve Fitting

- Linear Functions

(11) Graph the following equations. Determine if they are functions.
(a) $y=2$
(b) $x=2$
(c) $y=3 x$
(d) $y=-2 x+4$
(12) Definition. The variable y is directly proportional to x (or varies directly with x) if there is some positive constant m such that $y=m x$. We call m the constant of proportionality, or variation constant.
(13) The weight M of a person's muscles is directly proportional to the person's body weight W. It is known that a person weighing 200 lb has 80 lb of muscle.
(a) Find an equation of variation expressing M as a function of W.
(b) What is the muscle weight of a person weighing 120 lb ?
(14) Definition. A linear function is any function that can be written in the form $y=m x+b$ or $f(x)=m x+b$, called the slope-intercept equation of a line. The constant m is called the slope. The point $(0, b)$ is called the \boldsymbol{y}-intercept.
(15) Find the slope and y-intercept of the graph of $3 x+5 y-2=0$.
(16) Find an equation of the line that has slope 4 and passes through the point $(-1,1)$.
(17) Definition. The equation $y-y_{1}=m\left(x-x_{1}\right)$ is called the point-slope equation of a line. The point is $\left(x_{1}, y_{1}\right)$, and the slope is m.
(18) Find the point-slope equation of Problem 16. Compare the two equations.
(19) Theorem. The slope of a line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}=\frac{\text { change in } y}{\text { change in } x}
$$

Slope can also be considered as an average rate of change.
(20) Find the slope of the line passing through the points $(3,-2)$ and $(1,4)$. Then find the equation of the line.
(21) A skateboard ramp is 2 ft high and 5 ft long in base. Find its slope.
(22) The tuition and fees at public two-year colleges were $\$ 2063$ in 2008 and $\$ 3264$ in 2014. Find the average rate of change.
(23) A computer firm is planning to sell a new graphing calculator. For the first year, the fixed costs for setting up the new production line are $\$ 100,000$. The variable costs for each calculator are $\$ 20$. The sales department projects that 150,000 calculators will be sold during the first year at a price of $\$ 45$ each.
(a) Find the total cost $C(x)$ of producing x calculators, the total revenue $R(x)$ from the sale of x calculators, and the total profit $P(x)$ from the production and sale of x calculators.
(b) How many calculators must the firm sell in order to break even?
(c) What profit or loss will the firm realize if the expected sale of 150,000 calculators occurs?

- Quadratic Functions

(24) A quadratic function f is given by $f(x)=a x^{2}+b x+c$, where $a \neq 0$. The graph of a quadratic function is called a parabola. The line of symmetry of the graph is $x=-\frac{b}{2 a}$, and the vertex is $\left(-\frac{b}{2 a}, \frac{4 a c-b^{2}}{4 a}\right)$.
(25) Find the vertex and line of symmetry of $f(x)=-2 x^{2}-4 x+2$. Then graph the function.
(26) The Quadratic Formula. The solutions (also called zeros or roots) of any quadratic equation $a x^{2}+b x+c=0, a \neq 0$, are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
(27) Solve the equation $x^{2}-3 x+2=0$.
(28) Definition. A polynomial function f is given by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a nonnegative integer (called the degree) and $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0}$ are real numbers (called the coefficients).
(29) Definition. Functions given by the quotient, or ratio, of two polynomials are called rational functions.
(30) Graph $f(x)=1 / x$.
(31) Definition. y is inversely proportional to x (or varies inversely with x) if there is some positive number k for which $y=k / x$.

R 6. Exponential and logarithmic functions. Let $e=2.718281828459045$ and $a>0$.

$$
\begin{array}{lll}
y=e^{x} & \text { if and only if } & x=\log _{e} y \\
y=a^{x} & \text { if and only if } & x=\log _{a} y
\end{array}
$$

Ex. Simplify (i) $\log _{2}(256) ; \quad$ (ii) $\ln \left(10 e^{7}\right)$
Ex. Solve $10^{x+2}=\frac{1}{1,000,000}$

Ex. The logistic regression function provides an epidemiology model:

$$
f(x)=\frac{a}{1+b e^{k x}}
$$

where the parameters $a=243570, b=287.999, k=-.31601$. Use this function to give an approximate output value if the input x is equal to $15,20,30,45$ and 105.

HW from MLM Plus

