

**Review Final
Math 142**

**Name
Section Id**

Use exactly one page for each of the numbered questions (use the back of the page if necessary).

Put your name and the question number on each page.

Put a box around the final answer to a question.

You must *show* your work in order to get possible credits.

1. Find the limit of the sequence

a) $\lim_{n \rightarrow \infty} \frac{\cos n}{\ln n}$

Hint: Since

$$|a_n| \leq \frac{1}{\ln n} \rightarrow 0$$

as $n \rightarrow \infty$, we find $\lim_{n \rightarrow \infty} |a_n| = 0$ which means $\lim_{n \rightarrow \infty} a_n = 0$.

b) $\lim_{n \rightarrow \infty} \frac{n^5 - 4n^3 + 7}{5n^4 + n^2 + 100}$

Hint:

$$a_n = \frac{(n^5 - 4n^3 + 7)/n^4}{(5n^4 + n^2 + 100)/n^4} = \frac{n - \frac{4}{n} + \frac{7}{n^4}}{5 + \frac{1}{n^2} + \frac{100}{n^4}}$$

Since the top goes to ∞ and the bottom goes to 5, we must have $a_n \rightarrow \infty$.

c) $\lim_{n \rightarrow \infty} (1 - \frac{2}{3n})^n$

Hint:

$$a_n = e^{n \ln(1 - \frac{2}{3n})}$$

Use L'hopital rule to show $n \ln(1 - \frac{2}{3n}) \rightarrow -2/3$ hence $a_n \rightarrow e^{-2/3}$.

d) $\lim_{n \rightarrow -\infty} \frac{e^n - 1}{e^n + 1}$

2. Determine whether the limit of the following function/sequence exists, if so, find the limit:

a) $\lim_{x \rightarrow 0^+} \frac{\sin^{-1} \sqrt{x}}{\sqrt{x}}$

Hint: Sub $y = \sqrt{x}$ then

$$\lim \frac{\sin^{-1} \sqrt{x}}{\sqrt{x}} = \lim_{y \rightarrow 0} \frac{\sin^{-1} y}{y} = 1$$

by L'hopital rule.

b) $\lim_{x \rightarrow +\infty} (x \ln x)^2 e^{-x}$

Hint: Write

$$(x \ln x)^2 e^{-x} = \frac{(x \ln x)^2}{e^x}$$

then apply L'hopital a couple of times

c) $\lim_{x \rightarrow \infty} x \tan(\pi/x)$

d) $\lim_{n \rightarrow \infty} \frac{n!}{n^n}$

Hint: Instead of finding the limit of the sequence $a_n = \frac{n!}{n^n}$ directly, we consider the series $\sum_n a_n$. If we can show the series converges, then by the basic property of a convergent series we know that a_n must converge to zero.

To show the convergence of $\sum_n a_n$ we use ratio test (or root test if you prefer) to find that $\lim a_{n+1}/a_n = 0 < 1$, which means convergence of $\sum a_n$.

e) $\lim_{n \rightarrow \infty} 2^{-n}$

f) $\lim_{n \rightarrow \infty} (-2)^n$

Fill in the blanks or parenthesis in Problems 3 to 8.

3. Let $a > 0$ be a constant. (a) $\int \frac{dx}{a^2+x^2} = \text{_____} + C$

(b) $\int \frac{dx}{a^2-x^2} = \text{_____} + C$

c) $\int \frac{dx}{\sqrt{a^2+x^2}} = \text{_____} + C$

d) $\int \frac{dx}{\sqrt{a^2-x^2}} = \text{_____} + C$

4 (a) If $a > 0$ but $a \neq 1$, then $D_x (a^x) = \text{_____}$

Hint: $a^x = e^{\ln(a^x)} = e^{x \ln(a)}$.

(b) $D_x (x^x) = \text{_____}$ Hint: $x^x = e^{x \ln x}$, then apply chain rule.

5. Trig substitution: (recall that the *integrand* is the function you are integrating)

a) if the integrand involves $a^2 - u^2$, then one makes the substitution $u = \underline{\hspace{2cm}}$

b) if the integrand involves $a^2 + u^2$, then one makes the substitution $u = \underline{\hspace{2cm}}$

6. Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polynomials and $[\text{degree of } f] \geq [\text{degree of } g]$, then one must first do _____

7 (a) A series $\sum a_n$ is said to *converge absolutely* if $\sum |a_n| \underline{\hspace{2cm}}$
Give an example of an absolutely convergent series: _____

(b) A series $\sum a_n$ is said to *converge conditionally* if $\sum a_n$ is _____
but $\sum |a_n| \underline{\hspace{2cm}}$. Give an example of a conditionally convergent series: _____

8 (a) Consider the interval $I = (a - R, a + R)$ center about $x = a$ and of radius R .

Let $y = f(x)$ be a function that can be differentiated N times $x = a$. Then the N^{th} -order Taylor polynomial $y = P_N(x)$ of f about a is (your answer should have a summation sign \sum in it)

$$P_N(x) = \underline{\hspace{10cm}}$$

(b) Consider the interval $I = (a - R, a + R)$ center about $x = a$ and of radius R .

Let $y = f(x)$ be a function that can be differentiated $N + 1$ times for each $x \in I$.

Consider the the N^{th} -order Taylor Reminder term $R_N(x)$, where $f(x) = P_N(x) + R_N(x)$.

Then an upper bound for $|R_N(x)|$ for an $x \in I$ is:

$$|R_N(x)| \leq \underline{\hspace{10cm}}$$

9. Use chain rule or logarithm derivative method to find the derivative. a) $D_x (\cos(\ln x)) =$

b) $D_x (7^{(x-2)^2}) =$

10. Evaluate the integrals. a) $\int (\tan x) (\sec^7 x) dx =$

Hint: Sub $u = \sec x$, then $du = \tan x \sec x dx$. $\int (\tan x) (\sec^7 x) dx = \int u^6 du$

b) $\int x^2 \arctan x dx =$

Hint: Integrating by parts, $u = \arctan x$, $dv = x^2 dx$ then $du = \frac{1}{1+x^2} dx$, $v = x^3/3$

$$\int x^2 \arctan x dx = uv - \int v du$$

c) $\int \frac{x^2}{\sqrt{4-x^2}} dx =$

d) $\int x^{\frac{1}{2}} \ln x dx$

Hint: Integration by parts

e) $\int_0^1 \frac{u^3}{(u+1)^2} du$

Method I. Partial fraction:

$$\frac{u^3}{(u+1)^2} = (u-2) + \frac{3u+2}{(u+1)^2} = u-2 + \frac{3}{u+1} - \frac{1}{(u+1)^2}$$

Method II. Substitute $y = u + 1$.

f) $\int \frac{1-x}{1+x+x^2} dx$

Hint: The factor $1 + x + x^2$ is an irreducible quadratic polynomial, that is, it does not have real root. So the integrand is a rational function in a standard form already.

Complete the square $1 + x + x^2 = 3/4 + (x + 1/2)^2$ and write

$$\frac{1 - x}{1 + x + x^2} = -\frac{x + 1/2}{3/4 + (x + 1/2)^2} + \frac{3/2}{3/4 + (x + 1/2)^2}$$

g) $\int x(\sqrt{x} + 1)^{1/3} dx$

11. Let R be the region enclosed by $y = x^2$, $x = 2$ and $y = 0$. Let V be the volume of the solid obtained by revolving the region R about the line $x = 3$.

(a) Make a rough sketch below of the region R , labeling the important points.

(b) Using the disk/washer method, express the volume V as an integral (or maybe 2 integrals). You do NOT have to evaluate the integral(s).

$V =$

12. Determine whether the improper integral converges.

(a) $\int_0^1 \ln(1 - x) dx$

Hint: $x = 1$ is a singularity. Consider $\int_0^b \ln(1 - x) dx$ as $b \rightarrow 1_-$.

(b) $\int_0^{\pi/2} \frac{\cos x}{\sqrt{x}} dx$

Hint: $x = 0$ is a singularity. The inequality

$$\left| \frac{\cos x}{\sqrt{x}} \right| \leq \frac{1}{\sqrt{x}}$$

and the fact that $\int_0^{\pi/2} \frac{dx}{\sqrt{x}} < \infty$ suggests that the original integral converges by direct comparison test for improper integrals.

(c) $\int_0^\infty \frac{dx}{5000 + x}$

Hint:

$$\lim_{x \rightarrow \infty} \frac{\frac{1}{5000+x}}{\frac{1}{x}} = 1 \neq 0$$

By limit comparison test we know the original integral diverges because $\int 1/xdx = \infty$.

13. Does the following series converge or diverge? Explain your answer by stating which kind of test you are using and how it works.

$$a. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$

Hint:

$$\lim_{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n} + \sqrt{n+1}}}{\frac{1}{\sqrt{n}}} = 1/2 \neq 0$$

By limit comparison test the original series diverges because the p -series $\sum 1/\sqrt{n} = \infty$.

$$b^*(optional) \quad \sum_{n=0}^{\infty} (-1)^n \frac{1}{(n+1)^{0.6}}$$

$$c) \quad \sum_{n=2}^{\infty} ne^{-\sqrt{n}}$$

Hint: Method I. Integral test. Consider $\int_2^{\infty} xe^{-\sqrt{x}}dx$.

Method II. Limit comparison test. Since

$$\lim_n \frac{ne^{-\sqrt{n}}}{1/n^2} = 0 < \infty$$

by L.C.T. the original series converges because the p -series $\sum 1/n^2 < \infty$.

Remark. ratio test D.N. work because $\lim_n a_{n+1}/a_n = 1$, which does not yield a conclusion.

14. Determine the radius and interval of convergence of the power series

$$a) \quad \sum_{n=1}^{\infty} \frac{x^n}{n}$$

Ans: radius $R = 1$; interval $[-1, 1]$

b)
$$\sum_{n=2}^{\infty} (\ln n) x^{2n+1}$$

Ans: radius $R = 1$; interval $(-1, 1)$

15. Let $a_n = \frac{e^n \cdot n!}{(2n)!}$. Find $\frac{a_{n+1}}{a_n}$. Simplify your answer so that no factorial sign (i.e., !) appears.

answer: $\frac{a_{n+1}}{a_n} =$

absolutely convergent

$$\sum_{n=1}^{\infty} (-1)^n \frac{e^n (n!)}{(2n)!}$$

conditionally convergent

divergent

16. Consider the formal power series

$$\sum_{n=1}^{\infty} \frac{(2-x)^{n-1}}{5^n} .$$

In the box below draw a diagram indicating for which x 's this series is: absolutely convergent, conditionally convergent, and divergent. Of course, indicate your reasoning.

17. Let

$$f(x) = (1+x)^{3/2}$$

Find the 3rd-order Taylor polynomial of $y = f(x)$ about $x = 0$.

$$P_3(x) = 1 + \frac{3}{2}x + \frac{3}{8}x^2 - \frac{3}{48}x^3$$

18. Find the Taylor or Maclaurin series of $y = f(x)$

(a)

$$f(x) = e^{2x+1}$$

about $x = 1$

Hint:

$$e^{2x+1} = e^{2(x-1)+3} = e^3 \sum_{n=0}^{\infty} \frac{2^n}{n!} (x-1)^n = \sum_{n=0}^{\infty} \frac{2^n e^3}{n!} (x-1)^n, \quad -\infty < x < \infty$$

(b)

$$f(x) = \frac{1}{1+x^2}$$

about $x = 0$.

Hint:

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad -1 < x < 1$$

19. The equation of the ellips is given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Express the length of the ellips as an definite integral. Do not evaluate the integral.