

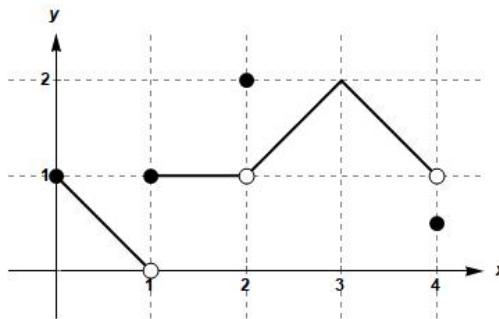
§2.4 One-Sided Limits

Example 1. The domain of $f(x) = \sqrt{4 - x^2}$ is $[-2, 2]$; its graph is a semicircle centered at origin with radius 2. We have $\lim_{x \rightarrow -2^+} \sqrt{4 - x^2} = 0$ and $\lim_{x \rightarrow 2^-} \sqrt{4 - x^2} = 0$.

Theorem 6. Suppose that a function f is defined on an open interval containing c , except perhaps at c itself. Then $f(x)$ has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \rightarrow c} f(x) = L \iff \lim_{x \rightarrow c^-} f(x) = L \text{ and } \lim_{x \rightarrow c^+} f(x) = L.$$

Example 2. Discuss the limit of the function $y = f(x)$ graphed below.



Ex. Discuss the existence of the one-sided limit for $f(x) = \frac{x}{|x|}$ as $x \rightarrow 0+$ or $x \rightarrow 0-$.

Exercise 18. Find the limits: (a) $\lim_{x \rightarrow 1^+} \frac{\sqrt{2x}(x-1)}{|x-1|}$ (b) $\lim_{x \rightarrow 1^-} \frac{\sqrt{2x}(x-1)}{|x-1|}$.

§2.5 Continuity

Example 1. At which numbers does the function f in §2.4 Example 2 appear to be not continuous? Explain why. What occurs at other numbers in the domain?

Definition. Let c be a real number that is either an interior point or an endpoint of an interval in the domain of f .

The function f is **continuous at c** if $\lim_{x \rightarrow c} f(x) = f(c)$.

The function f is **right-continuous at c** (or **continuous from the right**) if $\lim_{x \rightarrow c^+} f(x) = f(c)$.

The function f is **left-continuous at c** (or **continuous from the left**) if $\lim_{x \rightarrow c^-} f(x) = f(c)$.

Definition. We define a **continuous function** to be one that is continuous at every point in its domain. If a function is discontinuous at one or more points of its domain, we say it is a **discontinuous** function.

Theorem 8. If the functions f and g are continuous at $x = c$, then the following algebraic combinations are continuous at $x = c$.

1 & 2. <i>Sums & Differences:</i>	$f \pm g$
3. <i>Constant Multiples:</i>	$k \cdot f$, for any number k
4. <i>Products:</i>	$f \cdot g$
5. <i>Quotients:</i>	f/g , provided $g(c) \neq 0$
6. <i>Powers:</i>	f^n , n a positive integer
7. <i>Roots:</i>	$\sqrt[n]{f}$, provided well-defined and n a positive integer

Example 6. (a) Every polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is continuous because $\lim_{x \rightarrow c} P(x) = P(c)$.

(b) If $P(x)$ and $Q(x)$ are polynomials, then the rational function $P(x)/Q(x)$ is continuous wherever it is defined ($Q(c) \neq 0$).

Example 7. The function $f(x) = |x|$ is continuous.

Exercise 72. The functions $y = \sin x$ and $y = \cos x$ are continuous at every point $x = c$. All six trigonometric functions are continuous wherever they are defined.

Proposition. When a continuous function defined on an interval has an inverse, the inverse function is itself a continuous function over its own domain.

Theorem 9 (Composition of Continuous Functions). If f is continuous at c and g is continuous at $f(c)$, then the composition $g \circ f$ is continuous at c .

Example 8. Show that the following functions are continuous on their natural domains.

$$(c) y = \left| \frac{x-2}{x^2-2} \right|$$

Theorem 10. If $\lim_{x \rightarrow c} f(x) = b$ and g is continuous at the point b , then $\lim_{x \rightarrow c} g(f(x)) = g(b)$.

Example 9. Find (a) $\lim_{x \rightarrow \pi/2} \cos(2x + \sin(\frac{3\pi}{2} + x))$ (b) $\lim_{x \rightarrow 1} \sin^{-1} \left(\frac{1-x}{1-x^2} \right)$.

Example 12. Show that $f(x) = \frac{x^2 + x - 6}{x^2 - 4}$, $x \neq 2$ has a continuous extension to $x = 2$, and find that extension.

Ex. From [MML](#)

§2.6 Limits Involving Infinity; Asymptotes of Graphs

Example 1. (a) $\lim_{x \rightarrow \infty} \frac{1}{x} = 0$ (b) $\lim_{x \rightarrow -\infty} \frac{1}{x} = 0$

Exercises 93 & 94. (a) $\lim_{x \rightarrow \infty} k = k$ (b) $\lim_{x \rightarrow -\infty} k = k$ (k is a constant)

Ex. From [MML](#)