

§3.7 Implicit Differentiation

The implicit differentiation method. Given that $y = y(x)$ is a function of x defined implicitly by the equation $F(x, y) = C$.

Step 1. Take derivative in x both sides of the equation using possibly chain rule.

Step 2. Then, from the resulting equation obtained in Step 1, solve for $y' = dy/dx$ in terms of x and y .

Example 2. Find the slope of the circle $x^2 + y^2 = 25$ at the point $(3, -4)$.

Solution. Step 1. Differentiating both sides of the equation with respect to x , we obtain

$$(1) \quad 2x + 2y \cdot y' = 0$$

Step 2. Solve for y' in (1) to have

$$y' = -\frac{x}{y}.$$

\therefore The slope at $(3, -4)$ is given by $m = \frac{dy}{dx}|_{(3, -4)} = \frac{3}{4}$. \square

Example 3. Find dy/dx if $y^2 = x^2 + \sin xy$.

Solution. Step 1. Differentiating both sides of the equation w. r. t. x , we obtain

$$(2) \quad 2yy' = 2x + (y + xy') \cos xy$$

Step 2. Solve for y' in (2) to have

$$y' = \frac{2x + y \cos xy}{2y - x \cos xy}.$$

\square

Example 4. Find d^2y/dx^2 if $2x^3 - 3y^2 = 8$.

Solution. Step 1. Differentiating both sides of the equation in x , we have

$$(3) \quad \begin{aligned} 6x^2 - 6y \cdot y' &= 0 \\ x^2 - y \cdot y' &= 0 \end{aligned}$$

Step 2. Solve for y' in (3) to obtain

$$y' = \frac{x^2}{y} .$$

Step 3. Repeat taking derivative in (3) in x again, we obtain

$$\begin{aligned} 2x - y'^2 - yy'' &= 0 \\ \Rightarrow y'' &= \frac{2x - y'^2}{y} = \frac{2xy^2 - x^4}{y^3} . \end{aligned}$$

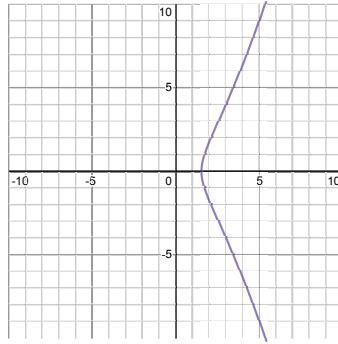


FIGURE 1. Plot of the implicit equation $2x^3 - 3y^2 = 8$ in Ex.4

The following graph for the implicit function $y = y(x)$ is produced from [demo](#) □

Example 5. Show that the point $(2, 4)$ lies on the curve $x^3 + y^3 - 9xy = 0$. Then find the tangent and normal to the curve there.

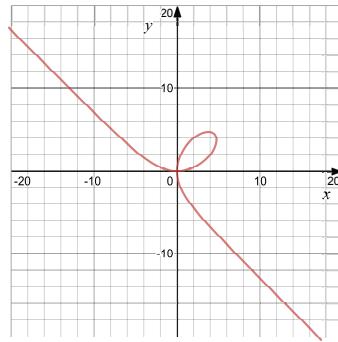


FIGURE 2. Plot of the implicit equation $x^3 + y^3 - 9xy = 0$ in Ex.5

Ex. (MML 3.7,#47) Find the slopes of the devil's curve $y^4 - 4y^2 = x^4 - 9x^2$ at the four indicated points $(\pm 3, 2)$ and $(\pm 3, -2)$.

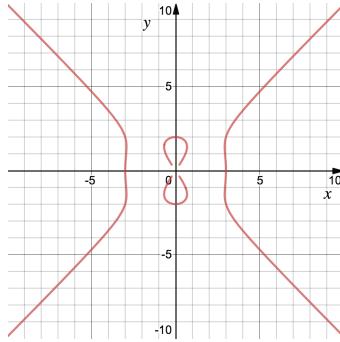


FIGURE 3. Plot of the implicit equation $y^4 - 4y^2 = x^4 - 9x^2$ by [demo](#)

Ans: $m = \mp \frac{27}{8}$ at $(-3, \pm 2)$; $m = \pm \frac{27}{8}$ at $(3, \pm 2)$.

§3.8 Derivatives of Inverse Functions and Logarithms

Theorem 3 (The Derivative Rule for Inverses). If f has an interval I as domain and $f'(x)$ exists and is never zero on I , then f^{-1} is differentiable at every point in its domain (the range of f). The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} \quad \text{or} \quad \frac{df^{-1}}{dx} \Big|_{x=b} = \frac{1}{\frac{df}{dx} \Big|_{x=f^{-1}(b)}}.$$

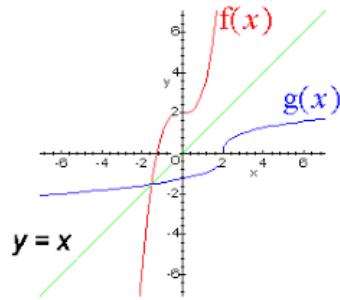


FIGURE 4. Plot of the inverse functions $y = f(x)$ and $y = g = f^{-1}(x)$

Example 2. Let $f(x) = x^3 - 2$, $x > 0$. Find the value of df^{-1}/dx at $x = 6 = f(2)$ without finding a formula for $f^{-1}(x)$.

[Solution] Step 1. Write $y = f(x) = x^3 - 2$, $x > 0$.

The inverse function $y = f^{-1}(x)$ satisfies $x = y^3 - 2$ by switching x and y in the equation above.

Step 2. In order to evaluate the derivative of $y = f^{-1}$, we apply the formula at the point (a, b) with $b = f(a)$; note here $(a, b) = (2, 6)$.

$$\begin{aligned}\frac{df^{-1}}{dx}\big|_{x=b=6} &= \frac{1}{\frac{df}{dx}\big|_{x=f^{-1}(b)}} = \frac{1}{\frac{df}{dx}\big|_{x=a}} \\ &= \frac{1}{\frac{df}{dx}\big|_{x=2}} = \frac{1}{12},\end{aligned}$$

where $f'(x) = 3x^2 \Rightarrow f'(2) = 3(2)^2 = 12$.

Derivative of Logarithm. $\frac{d}{dx}(\ln x) = \frac{1}{x}$, $x > 0$.

More generally, $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$, $x \neq 0$.

The natural logarithm function $y = \ln x$ is the inverse of $y = e^x$, whose graph is given in Figure 5.

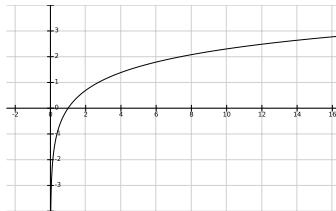


FIGURE 5. Plot of the logarithm function $y = \ln x$

Example 3. Find (a) $\frac{d}{dx} \ln(2x)$ (b) $\frac{d}{dx} \ln(x^2 + 3)$.

[answer: (a) $\frac{1}{x}$; (b) $\frac{2x}{x^2+3}$.]

Example 4. A line with slope m passes through the origin and is tangent to the graph $y = \ln x$. What is the value of m ?

Example 6*. Find dy/dx if $y = \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}$, $x > 1$.

[Solution] By logarithmic differentiation method

$$\begin{aligned}\ln y &= \ln(x^2 + 1) + \frac{1}{2} \ln(x + 3) - \ln(x - 1) \\ \frac{1}{y} y' &= \frac{2x}{x^2 + 1} + \frac{1}{2} \frac{1}{x + 3} - \frac{1}{x - 1} \\ \Rightarrow y' &= y \left(\frac{2x}{x^2 + 1} + \frac{1}{2} \frac{1}{x + 3} - \frac{1}{x - 1} \right) \\ y' &= \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1} \left(\frac{2x}{x^2 + 1} + \frac{1}{2(x + 3)} - \frac{1}{x - 1} \right).\end{aligned}$$

Example 7*. Differentiate $f(x) = x^x$, $x > 0$.

[Solution] Write $y = x^x$. Then $\ln y = x \ln x$. Implicit differentiation gives

$$\begin{aligned}\frac{1}{y} y' &= \ln x + x \left(\frac{1}{x} \right) \\ \Rightarrow y' &= (1 + \ln x)x^x.\end{aligned}$$

§3.9 Inverse Trigonometric Functions

Definition. $y = \sin^{-1} x$ is the number in $[-\pi/2, \pi/2]$ for which $\sin y = x$.

$y = \cos^{-1} x$ is the number in $[0, \pi]$ for which $\cos y = x$.

$y = \tan^{-1} x$ is the number in $(-\pi/2, \pi/2)$ for which $\tan y = x$.

$y = \cot^{-1} x$ is the number in $(0, \pi)$ for which $\cot y = x$.

$y = \sec^{-1} x$ is the number in $[0, \pi/2) \cup (\pi/2, \pi]$ for which $\sec y = x$.

$y = \csc^{-1} x$ is the number in $[-\pi/2, 0) \cup (0, \pi/2]$ for which $\csc y = x$.

Ex. **Derivative of $\sin^{-1} x$.** $\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$, $|x| < 1$.

Example 2. Find $\frac{d}{dx}(\sin^{-1} x^2)$.

[answer: $\frac{d}{dx}(\sin^{-1}(x^2)) = \frac{2x}{\sqrt{1 - x^4}}$.]

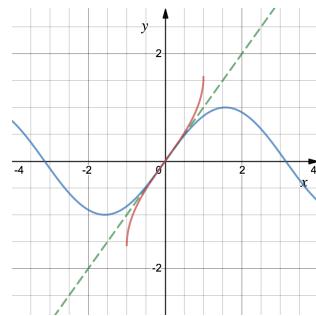
TABLE 1. Derivative formulae for inverse trigonometric functions

f	f'	f	f'
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$	$\cot^{-1} x$	$-\frac{1}{1+x^2}$
$\sec^{-1} x$	$\frac{1}{ x \sqrt{x^2-1}}$	$\csc^{-1} x$	$-\frac{1}{ x \sqrt{ x ^2-1}}$

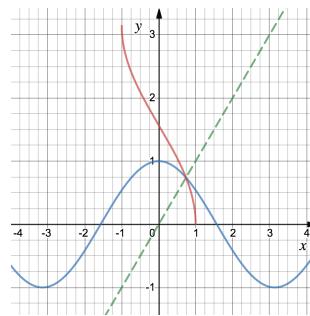
Derivative of $\tan^{-1} x$. $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}.$

Derivative of $\sec^{-1} x$. $\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1.$

Ex. From MML

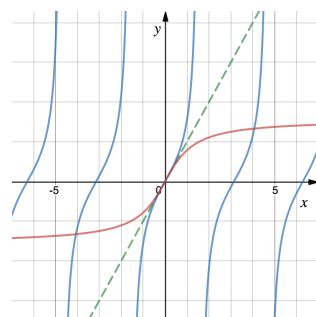


(A) $\arcsin x$ vs $\sin x$

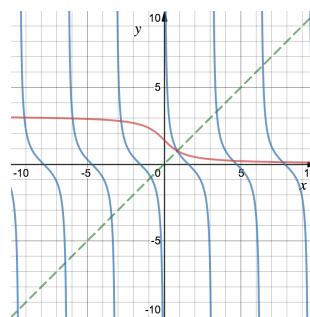


(B) $\arccos x$ vs $\cos x$

FIGURE 6. graphs of $\sin^{-1} x$ and $\cos^{-1} x$

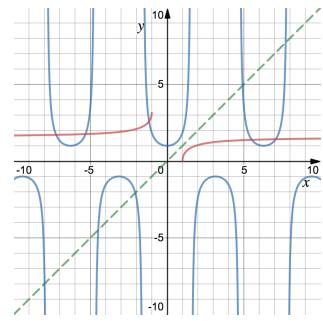


(A) $\arctan x$ vs $\tan x$

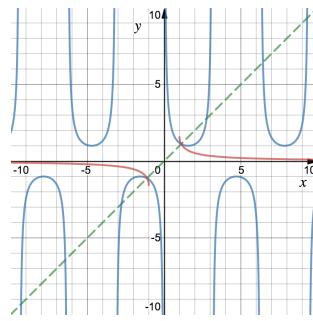


(B) $\arccot x$ vs $\cot x$

FIGURE 7. graphs of $\tan^{-1} x$ and $\cot^{-1} x$



(A) $\text{arcsec } x$ vs $\sec x$



(B) $\text{arccsc } x$ vs $\csc x$

FIGURE 8. graphs of $\sec^{-1} x$ and $\csc^{-1} x$

§3.10* Related Rates

Exercise 6. If $x = y^3 - y$ and $dy/dt = 5$, then what is dx/dt when $y = 2$?

Exercise 10. If $r + s^2 + v^3 = 12$, $dr/dt = 4$, and $ds/dt = -3$, find dv/dt when $r = 3$ and $s = 1$.