

§5.3 The Definite Integral (Continued)

Exercise 20. Evaluate $\int_{-1}^1 (1 - |x|) dx$.

Solution. Method I. The definite integral is equal to the area of under the graph of the “hat-function” $y = 1 - |x|$. So, we only need to find the area of the triangle $= \frac{1}{2}bh = \frac{1}{2}(2)(1) = 1$.

Method II. Note that $|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0. \end{cases}$ We split the integral into two parts:

$$\begin{aligned} \int_{-1}^1 (1 - |x|) dx &= \int_{-1}^0 (1 - |x|) dx + \int_0^1 (1 - |x|) dx \\ &= \int_{-1}^0 (1 - (-x)) dx + \int_0^1 (1 - x) dx \\ &= \left(x + \frac{x^2}{2} \right) \Big|_{-1}^0 + \left(x - \frac{x^2}{2} \right) \Big|_0^1 = -\left(-\frac{1}{2} \right) + \frac{1}{2} = 1. \end{aligned}$$

□

Definition. If f is integrable on $[a, b]$, then its **average value on $[a, b]$** , which is also called its **mean**, is $\text{av}(f) = \frac{1}{b-a} \int_a^b f(x) dx$.

Example 5. Find the average value of $f(x) = \sqrt{4 - x^2}$ on $[-2, 2]$.

Solution. The integral of $f(x)$ over $[-2, 2]$ is equal to the area of a semi-circle of radius 2. Hence we have $\int_{-2}^2 \sqrt{4 - x^2} dx = \frac{1}{2}\pi R^2 = \frac{1}{2}\pi(2)^2 = 2\pi$. By the definition,

$$\text{av}(f) = \frac{1}{b-a} \int_a^b f(x) dx = \frac{1}{2 - (-2)} (2\pi) = \frac{\pi}{2}.$$

□

Video [The Integral \(28 min\)](#) Definition of the integral. Signed area. Interval additivity property.

§5.4 The Fundamental Theorem of Calculus

Theorem 3 (The Mean Value Theorem for Definite Integrals). If f is continuous on $[a, b]$, then at some point c in $[a, b]$, $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$.

Theorem 4 (The Fundamental Theorem of Calculus, Part 1). If f is continuous on $[a, b]$, then $F(x) = \int_a^x f(t) dt$ is continuous on $[a, b]$ and differentiable on (a, b) and its derivative is $f(x)$: $F'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x)$.

Example 2. Find dy/dx if

$$(a) y = \int_a^x (t^3 + 1) dt \quad (b) y = \int_x^5 3t \sin t dt \quad (c) y = \int_1^{x^2} \cos t dt \quad (d) y = \int_{1+3x^2}^4 \frac{1}{2+e^t} dt.$$

Solution. (a) The F.T.C. part I says that the derivative of $F(x) = \int_a^x f(t) dt$ w.r.t. x is equal to the integrand function evaluated at x , namely, $F'(x) = f(x)$. Thus

$$\frac{dy}{dx} = x^3 + 1.$$

$$(b) y = - \int_5^x 3t \sin t dt \Rightarrow \frac{dy}{dx} = -3x \sin x.$$

(c) Write the function y as a composite function $y = \int_1^u \cos t dt$, with $u = x^2$. By chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (\cos u)(2x) = 2x \cos x^2.$$

$$(d) \text{Chain rule yields } y'(x) = \frac{dy}{dx} = -6x \frac{1}{2+e^{1+3x^2}} = -\frac{6x}{2+e^{3x^2+1}}. \quad \square$$

Exercise 80. Find $f(4)$ if $\int_0^x f(t) dt = x \cos(\pi x)$.

Solution. F.T.C \Rightarrow

$$\frac{dy}{dx} \left(\int_0^x f(t) dt \right) = f(x).$$

On the other hand $\frac{dy}{dx}(x \cos(\pi x)) = \cos(\pi x) - \pi x \sin(\pi x)$. Hence

$$\begin{aligned} f(x) &= \cos(\pi x) - \pi x \sin(\pi x) \\ \Rightarrow f(4) &= \cos(4\pi) - \pi 4 \sin(4\pi) = 1. \end{aligned}$$

\square

Theorem 4 Continued (The Fundamental Theorem of Calculus, Part 2). If f is continuous over $[a, b]$ and F is any antiderivative of f on $[a, b]$, then $\int_a^b f(x) dx = F(b) - F(a)$.

Example 3. Calculate (a) $\int_{-\pi/4}^0 \sec x \tan x dx$ (c) $\int_1^4 \left(\frac{3}{2}\sqrt{x} - \frac{4}{x^2} \right) dx$ (d) $\int_0^1 \frac{dx}{x^2 + 1}$.

Solution. (a)

$$\begin{aligned} \int_{-\pi/4}^0 \sec x \tan x dx &= \sec(x) \Big|_{-\pi/4}^0 \\ &= \sec(0) - \sec(-\pi/4) = \frac{1}{\cos 0} - \frac{1}{\cos(-\pi/4)} = 1 - \sqrt{2}. \end{aligned}$$

(c)

$$\begin{aligned}\int_0^1 \frac{dx}{x^2 + 1} &= \tan^{-1}(x)|_0^1 \\ &= \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4}.\end{aligned}$$

□

Theorem 5 (The Net Change Theorem). The net change in a differentiable function $F(x)$ over an interval $[a, b]$ is the integral of its rate of change: $F(b) - F(a) = \int_a^b F'(x)dx$.

Example 8. Find the area of the region between the x -axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \leq x \leq 2$.

Solution. Factorize $f(x) = x^3 - x^2 - 2x = x(x+1)(x-2)$. We see that $y = f(x)$ is positive over $[-1, 0]$ and negative over $[0, 2]$. So the area of the region between the x -axis and the graph of $f(x)$ is given by

$$\begin{aligned}A &= \int_{-1}^2 |f(x)|dx = \int_{-1}^0 f(x)dx - \int_0^2 f(x)dx \\ &= \left(\frac{x^4}{4} - \frac{x^3}{3} - x^2 \right) \Big|_{-1}^0 - \left(\frac{x^4}{4} - \frac{x^3}{3} - x^2 \right) \Big|_0^2 \\ &= \frac{5}{12} - \left(-\frac{8}{3} \right) = \frac{37}{12}.\end{aligned}$$

□

Video [The Fundamental Theorem of Calculus \(26 min\)](#) Average value theorem. The function $F(x) = \int_a^x f(s) ds$. The fundamental theorem of calculus.

§5.5 Indefinite Integrals and the Substitution Method

Example 1. Find the integral $\int (x^3 + x)^5 (3x^2 + 1)dx$.

Solution. Let $u = x^3 + x$, then $du = u'dx = (3x^2 + 1)dx$. We have

$$\int (x^3 + x)^5 (3x^2 + 1)dx = \int u^5 du = \frac{u^6}{6} + C = \frac{(x^3 + x)^6}{6} + C.$$

□

Theorem 6 (The Substitution Rule). If $u = g(x)$ is a differentiable function whose range is an interval I , and f is continuous on I , then $\int f(g(x)) \cdot g'(x)dx = \int f(u)du$.

Example 4. Find $\int \cos(7\theta + 3)d\theta$.

[Answer] $\frac{\sin(7\theta+3)}{7} + C$

Example 5. Find $\int x^2 e^{x^3} dx$.

[Answer] $\frac{e^{x^3}}{3} + C$

Example 6. Evaluate (1) $\int \sqrt{2x+1} dx$.

(2) $\int x\sqrt{2x+1} dx$

[Solution of (1)] $\frac{(2x+1)^{3/2}}{3} + C$.

[Solution of (2)]. Let $u = 2x+1$, then $x = \frac{u-1}{2}$, $dx = \frac{1}{2}du$.

$$\begin{aligned} \int x\sqrt{2x+1}dx &= \int \left(\frac{u-1}{2}\right)u^{1/2} \frac{du}{2} \\ &= \frac{1}{4} \int (u-1)u^{1/2}du = \frac{1}{4} \left(\int u^{3/2}du - \int u^{1/2}du \right) \\ &= \frac{1}{4} \left[\frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2} + C \right] = \frac{1}{10}(2x+1)^{5/2} - \frac{1}{6}(2x+1)^{3/2} + C. \end{aligned}$$

□

Integrals of the Tangent, Cotangent, Secant, and Cosecant Functions.

$$\int \tan x dx = \ln |\sec x| + C$$

$$\int \sec x dx = \ln |\sec x + \tan x| + C$$

$$\int \cot x dx = \ln |\sin x| + C$$

$$\int \csc x dx = -\ln |\csc x + \cot x| + C$$

[Video Change of Variables \(Substitution\) \(21 minutes\)](#)

Differentials. Using basic “ u -substitutions” to find indefinite integrals and compute definite integrals.

§5.6 Definite Integral Substitutions and the Area Between Curves

Theorem 7 (Substitution in Definite Integrals). If g' is continuous on the interval $[a, b]$ and f is continuous on the range of $g(x) = u$, then $\int_a^b f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$.

Example 1. Evaluate $\int_{-1}^1 3x^2 \sqrt{x^3 + 1} dx$.

Solution. Let $u = g(x) = x^3 + 1$, then $du = u'dx = 3x^2dx$. We have

$$\begin{aligned} \int_{-1}^1 3x^2 \sqrt{x^3 + 1} dx &= \int_0^2 \sqrt{u} du \\ &= \frac{2}{3} u^{3/2} \Big|_0^2 = \frac{2}{3} (2^{3/2}) = \frac{4\sqrt{2}}{3}. \end{aligned}$$

□

Example 2. Evaluate (a) $\int_{\pi/4}^{\pi/2} \cot \theta \csc^2 \theta d\theta$.

Solution. Let $u = \cot \theta$, then $du = u'd\theta = -\csc^2 \theta d\theta$.

$$\begin{aligned} \int_{\pi/4}^{\pi/2} \cot \theta \csc^2 \theta d\theta &= - \int_1^0 u du \\ &= - \frac{u^2}{2} \Big|_1^0 = 0 - \left(-\frac{1}{2}\right) = \frac{1}{2}. \end{aligned}$$

□

Definition. If f and g are continuous with $f(x) \geq g(x)$ throughout $[a, b]$, then the **area of the region between the curves $y = f(x)$ and $y = g(x)$ from a to b** is the integral of $(f - g)$ from a to b : $A = \int_a^b [f(x) - g(x)] dx$.

Example 4. Find the area of the region bounded above by the curve $y = 2e^{-x} + x$, below by the curve $y = e^x/2$, on the left by $x = 0$, and on the right by $x = 1$.

Solution.

$$\begin{aligned} A &= \int_0^1 (2e^{-x} + x) - \frac{e^x}{2} dx = -2e^{-x} + \frac{x^2}{2} - \frac{e^x}{2} \Big|_0^1 \\ &= 3 - \frac{e}{2} - \frac{2}{e}. \end{aligned}$$

□

Example 5. Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line $y = -x$.

Solution. First we found the intersection points of the parabola and the line. Solve

$$\begin{cases} y = 2 - x^2 \\ y = -x \end{cases} \Rightarrow x_1 = -1, \quad x_2 = 2.$$

These will be the interval $[-1, 2]$. From the graph we see $f(x) \geq g(x)$ on $[-1, 2]$. By the definition of the area between two curves, we have

$$\begin{aligned} A &= \int_a^b (f(x) - g(x)) dx \\ &= \int_{-1}^2 (2 - x^2 - (-x)) dx \\ &= 2x - \frac{x^3}{3} + \frac{x^2}{2} \Big|_{-1}^2 = (4 - \frac{8}{3} + 2) - (-2 + \frac{1}{3} + \frac{1}{2}) = \frac{9}{2}. \end{aligned}$$

□

Examples 6 & 7. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x -axis and the line $y = x - 2$.

Solution. From the graph we see the area is divided into two parts: the parabola \sqrt{x} over $[0, 2]$ and $[2, 4]$. To see this, first we found the intersection point(s) of the parabola and the line. Solve

$$\begin{cases} y = \sqrt{x} \\ y = x - 2 \end{cases} \Rightarrow x_1 = 1 \text{ (dropped)}, \quad x_2 = 4$$

where we observe that the point $(4, 2)$ is the only solution of the equations in the first quadrant.

The graph shows the area A is the sum of two parts

$$\begin{aligned} A &= \int_0^2 (\sqrt{x} - 0) dx + \int_2^4 (\sqrt{x} - (x - 2)) dx \\ &= \frac{2}{3}x^{3/2} \Big|_0^2 + \left(\frac{2}{3}x^{3/2} - \frac{x^2}{2} + 2x \right) \Big|_2^4 \\ &= \frac{2}{3}(2^{3/2}) + \left(\frac{2}{3}4^{3/2} - 8 + 8 \right) - \left(\frac{2}{3}(2^{3/2}) - 2 + 4 \right) = \frac{10}{3}. \end{aligned}$$

□

Video [Areas Between Curves \(19 minutes\)](#)