A systematic way of synchronously organizing lecture notes by summarizing the text and connecting to the virtual assignment

§1.1 Introduction to Systems of Linear Equations

Definition. A linear equation in *n* variables $x_1, x_2, x_3, \dots, x_n$ has the form

$$a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b.$$

The coefficients $a_1, a_2, a_3, \dots, a_n$ are real numbers, and the constant term b is a real number. The number a_1 is the leading coefficient, and x_1 is the leading variable.

Example 1. Linear or nonlinear?

(a) $3x + 2y = 7$	(b) $\frac{1}{2}x + y - \pi z = \sqrt{2}$	(c) $(\sin \pi)x_1 - 4x_2 = e^2$
(d) $xy + z = 2$	(e) $e^x - 2y = 4$	(f) $\sin x_1 + 2x_2 - 3x_3 = 0$

Example 3. Solve the linear equation 3x + 2y - z = 3.

Definition. A system of m linear equations in n variables is a set of m equations, each of which is linear in the same n variables:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2,$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m.$$

A system of linear equations is also called a **linear system**.

Example 4. Solve and graph each system of linear equations.

(a)
$$\begin{array}{c} x+y=3\\ x-y=-1 \end{array}$$
 (b) $\begin{array}{c} x+y=3\\ 2x+2y=6 \end{array}$ (c) $\begin{array}{c} x+y=3\\ x+y=1 \end{array}$

Theorem. For a system of linear equations, precisely one of the statements below is true. 1. The system has exactly one solution (consistent system).

- 2. The system has infinitely many solutions (consistent system).
- 3. The system has no solution (inconsistent system).

Example 6. Sovle the system.

$$x - 2y + 3z = 9$$
$$y + 3z = 5$$
$$z = 2$$

Operations That Produce Equivalent Systems. Each of these operations on a system of linear equations produces an *equivalent* system.

- 1. Interchange two equations.
- 2. Multiply an equation by a nonzero constant.
- 3. Add a multiple of an equation to another equation.

Example 7. Solve the system. Then check your answer.

$$x - 2y + 3z = 9$$
$$-x + 3y = -4$$
$$2x - 5y + 5z = 17$$

Example 8. Solve the system.

$$x_1 - 3x_2 + x_3 = 1$$

$$2x_1 - x_2 - 2x_3 = 2$$

$$x_1 + 2x_2 - 3x_3 = -1$$

Example 9. Solve the system.

$$x_2 - x_3 = 0$$

 $x_1 - 3x_3 = -1$
 $-x_1 + 3x_2 = 1$

§1.2 Gaussian Elimination and Gauss-Jordan Elimination

Definition. If m and n are positive integers, then an $m \times n$ matrix is a rectangular array

a_{m1}	a_{m2}	a_{m3}		a_{mn}
:	:	:		:
a_{31}	a_{32}	a_{33}	•••	a_{3n}
a_{21}	a_{22}	a_{23}	•••	a_{2n}
a_{11}	a_{12}	a_{13}	•••	a_{1n}

in which each **entry**, a_{ij} , of the matrix is a number. An $m \times n$ matrix has m rows and n columns. Matrices are usually denoted by capital letters.

Elementary Row Operations.

- 1. Interchange two rows.
- 2. Multiply a row by a nonzero constant.
- 3. Add a multiple of a row to another row.

Cengage Sample assignment. WebAssign: List of all sections

(optional^{*}) Videos on §1.1-1.2

- (1) Elimination method on 2 equations
- (2) Elimination method on 2 equations: Infinite solutions
- (3) System of 3 Equations Using Elimination (Fractions)
- (4) Elimination method on 3 unknows: ∞ solutions
- (5) A case of 3 equations with No solutions
- (6) Write a System of Equations as an Augmented Matrix (3 by 3)