A systematic way of synchronously organizing lecture notes by summarizing the text and connecting to the virtual assignment

§1.1 Introduction to Systems of Linear Equations

Definition. A linear equation in \boldsymbol{n} variables $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$ has the form

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}=b
$$

The coefficients $a_{1}, a_{2}, a_{3}, \cdots, a_{n}$ are real numbers, and the constant term b is a real number. The number a_{1} is the leading coefficient, and x_{1} is the leading variable.

Example 1. Linear or nonlinear?
(a) $3 x+2 y=7$
(b) $\frac{1}{2} x+y-\pi z=\sqrt{2}$
(c) $(\sin \pi) x_{1}-4 x_{2}=e^{2}$
(d) $x y+z=2$
(e) $e^{x}-2 y=4$
(f) $\sin x_{1}+2 x_{2}-3 x_{3}=0$

Example 3. Solve the linear equation $3 x+2 y-z=3$.
Definition. A system of \boldsymbol{m} linear equations in \boldsymbol{n} variables is a set of m equations, each of which is linear in the same n variables:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1}, \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2}, \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3}, \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m} .
\end{aligned}
$$

A system of linear equations is also called a linear system.
Example 4. Solve and graph each system of linear equations.
(a) $\begin{aligned} & x+y=3 \\ & x-y=-1\end{aligned}$
(b) $\begin{aligned} & x+y=3 \\ & 2 x+2 y=6\end{aligned}$
(c) $\begin{aligned} & x+y=3 \\ & x+y=1\end{aligned}$

Theorem. For a system of linear equations, precisely one of the statements below is true.

1. The system has exactly one solution (consistent system).
2. The system has infinitely many solutions (consistent system).
3. The system has no solution (inconsistent system).

Example 6. Sovle the system.

$$
\begin{aligned}
x-2 y+3 z & =9 \\
y+3 z & =5 \\
z & =2
\end{aligned}
$$

Operations That Produce Equivalent Systems. Each of these operations on a system of linear equations produces an equivalent system.

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of an equation to another equation.

Example 7. Solve the system. Then check your answer.

$$
\begin{aligned}
x-2 y+3 z & =9 \\
-x+3 y & =-4 \\
2 x-5 y+5 z & =17
\end{aligned}
$$

Example 8. Solve the system.

$$
\begin{aligned}
x_{1}-3 x_{2}+x_{3} & =1 \\
2 x_{1}-x_{2}-2 x_{3} & =2 \\
x_{1}+2 x_{2}-3 x_{3} & =-1
\end{aligned}
$$

Example 9. Solve the system.

$$
\begin{aligned}
x_{2}-x_{3} & =0 \\
x_{1}-3 x_{3} & =-1 \\
-x_{1}+3 x_{2} & =1
\end{aligned}
$$

§1.2 Gaussian Elimination and Gauss-Jordan Elimination

Definition. If m and n are positive integers, then an $m \times n$ matrix is a rectangular array

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

in which each entry, $a_{i j}$, of the matrix is a number. An $m \times n$ matrix has m rows and n columns. Matrices are usually denoted by capital letters.

Elementary Row Operations.

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

Cengage Sample assignment. WebAssign: List of all sections
(optional*) Videos on §1.1-1.2
(1) Elimination method on 2 equations
(2) Elimination method on 2 equations: Infinite solutions
(3) System of 3 Equations Using Elimination (Fractions)
(4) Elimination method on 3 unknows: ∞ solutions
(5) A case of 3 equations with No solutions
(6) Write a System of Equations as an Augmented Matrix (3 by 3)

