Theorem 2.1. If A, B and C are $m \times n$ matrices, and c and d are scalars, then the properties below are true.

1. $A+B=B+A$
2. $A+(B+C)=(A+B)+C$
3. $(c d) A=c(d A)$
4. $1 A=A$
5. $c(A+B)=c A+c B$
6. $(c+d) A=c A+d A$

Theorem 2.2. If A is an $m \times n$ matrix and c is a scalar, then the properties below are true.

1. $A+O_{m n}=A$
2. $A+(-A)=O_{m n}$
3. If $c A=O_{m n}$, then $c=0$ or $A=O_{m n}$.

Example 2. Solve for X in the equation $3 X+A=B$, where $A=\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$ and $B=$ $\left[\begin{array}{cc}-3 & 4 \\ 2 & 1\end{array}\right]$.
Theorem 2.3. If A, B and C are matrices (with sizes such that the matrix products are defined), and c is a scalar, then the properties below are true.

1. $A(B C)=(A B) C$
2. $A(B+C)=A B+A C$
3. $(A+B) C=A C+B C$
4. $c(A B)=(c A) B=A(c B)$

Example 4. Show that $A B$ and $B A$ are not equal for the matrices $A=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right]$.
Example 5. Show that $A C=B C$.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 4 \\
2 & 3
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]
$$

Definition. The identity matrix of order \boldsymbol{n} is the square matrix that has 1's on the main diagonal and 0's elsewhere:

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Theorem 2.4. If A is a matrix of size $m \times n$, then the properties below are true.

1. $A I_{n}=A$
2. $I_{m} A=A$

Example 6. (a) Find $\left[\begin{array}{cc}3 & -2 \\ 4 & 0 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Example 7. Find A^{3} for the matrix $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 0\end{array}\right]$.
Definition. The transpose of a matrix is formed by writing its rows as columns.
Example 8. Find the transpose of each matrix.

$$
\text { (b) } B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad \text { (d) } D=\left[\begin{array}{cc}
0 & 1 \\
2 & 4 \\
1 & -1
\end{array}\right]
$$

Theorem 2.6. If A and B are matrices (with sizes such that the matrix operations are defined) and c is a scalar, then the properties below are true.

1. $\left(A^{T}\right)^{T}=A$
2. $(A+B)^{T}=A^{T}+B^{T}$
3. $(c A)^{T}=c A^{T}$
4. $(A B)^{T}=B^{T} A^{T}$
