§2.3 The Inverse of a Matrix

Definition. An $n \times n$ matrix A is invertible (or nonsingular) when there exists an $n \times n$ matrix B such that $A B=B A=I_{n}$, where I_{n} is the identity matrix of order n. The matrix B is the (multiplicative) inverse of A. A matrix that does not have an inverse is noninvertible (or singular).

Theorem 2.7. If A is an invertible matrix, then its inverse is unique. The inverse of A is denoted by A^{-1}.

Example 3. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3\end{array}\right]$.
Example 4. Show that the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2\end{array}\right]$ has no inverse.
Theorem 2.8. If A is an invertible matrix, k is a positive integer, and c is a nonzero scalar, then $A^{-1}, A^{k}, c A$, and A^{T} are invertible and the statements below are true.

1. $\left(A^{-1}\right)^{-1}=A$
2. $\left(A^{k}\right)^{-1}=A^{-1} A^{-1} \cdots A^{-1}=\left(A^{-1}\right)^{k}$
3. $(c A)^{-1}=\frac{1}{c} A^{-1}$
4. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Theorem 2.9. If A and B are invertible matrices of order n, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem 2.10. If C is an invertible matrix, then the properties below are true.

1. If $A C=B C$, then $A=B$.
2. If $C A=C B$, then $A=B$.

Theorem 2.11. If A is an invertible matrix, then the system of linear equations $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Example 8. Use an inverse matrix to solve the system

$$
\begin{aligned}
& 2 x+3 y+z=-1 \\
& 3 x+3 y+z=1 \\
& 2 x+4 y+z=-2
\end{aligned}
$$

Ex. Cengage

§2.4 Elementary Matrices

Definition. An $n \times n$ matrix is an elementary matrix when it can be obtained from the identity matrix I_{n} by a single elementary row operation.

Example 1. Which of the matrices below are elementary? For those that are, describe the corresponding elementary row operation.
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(e) $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
(f) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right]$

Theorem 2.12. Let E be the elementary matrix obtained by performing an elementary row operation on I_{m}. If that same elementary row operation is performed on an $m \times n$ matrix A, then the resulting matrix is the product $E A$.

Example 3. Find a sequence of elementary matrices that can be used to write the matrix $A=\left[\begin{array}{cccc}0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0\end{array}\right]$ in row-echelon form.

Solution.

$$
A \longrightarrow\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 1 & 3 & 5 \\
2 & -6 & 2 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 1 & 3 & 5 \\
0 & 0 & 2 & -4
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

\therefore The elementary matrix corresponding to the row operation above are given in order as

$$
\begin{gathered}
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right], \text { meaning that } \\
E_{3} E_{2} E_{1} A=\left[\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & -2
\end{array}\right] .
\end{gathered}
$$

Definition. Let A and B be $m \times n$ matrices. Matrix B is row-equivalent to A when there exists a finite number of elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $B=E_{k} E_{k-1} \cdots E_{2} E_{1} A$.

Theorem 2.13. If E is an elementary matrix, then E^{-1} exists and is an elementary matrix.
Theorem 2.14. A square matrix A is invertible if and only if it can be written as the product of elementary matrices.

Example 4. Find a sequence of elementary matrices whose product is the nonsingular ma$\operatorname{trix} A=\left[\begin{array}{cc}-1 & -2 \\ 3 & 8\end{array}\right]$.
[Clue: Row reduce A to I_{2} through a sequence of elementary row operations $E_{1}, E_{2}, \ldots, E_{k}$.

$$
A \xrightarrow{E_{1}} \ldots \xrightarrow{E_{k}} I_{2} .
$$

That is, $E_{k} \cdots E_{2} E_{1} A=I \Rightarrow A=E_{1}^{-1} E_{2}^{-1} \cdots E_{k}^{-1}$, where each E_{i}^{-1} is an elementary matrix.]

Answer to Ex.4. : \dagger According to this approach given in the Clue, we proceed as follows. The row operation $A:=A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{5}=I$ is represented by

$$
\begin{aligned}
& E_{1} A=A_{2} \\
& E_{2} A_{2}=A_{3} \\
& E_{3} A_{3}=A_{4} \\
& E_{4} A_{4}=I
\end{aligned}
$$

where

$$
\begin{array}{cc}
& E_{1}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad E_{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad E_{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
\therefore & E_{1}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right] \quad E_{2}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \quad E_{3}^{-1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad E_{4}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
& A=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right] .
\end{array}
$$

Definition. If the $n \times n$ matrix A can be written as the product of a lower triangular matrix L and an upper triangular matrix U, then $A=L U$ is an $\boldsymbol{L} \boldsymbol{U}$-factorization of A.

Example 6*. Find an $L U$-factorization of the matrix $A=\left[\begin{array}{ccc}1 & -3 & 0 \\ 0 & 1 & 3 \\ 2 & -10 & 2\end{array}\right]$.
Example 7. Solve the linear system.

$$
\begin{aligned}
x_{1}-3 x_{2} & =-5 \\
x_{2}+3 x_{3} & =-1 \\
2 x_{1}-10 x_{2}+2 x_{3} & =-20
\end{aligned}
$$

Ex. Cengage

