In 3.2 we discussed using elementary row/column operations to evaluate the determinant of a matrix.

§3.3 Properties of Determinants

Theorem 3.5. If A and B are square matrices of order n, then det(AB) = det(A)det(B).

Theorem 3.6. If A is a square matrix of order n and c is a scalar, then the determinant of cA is $det(cA) = c^n det(A)$.

Theorem 3.7. A square matrix A is invertible (nonsingular) if and only if $det(A) \neq 0$.

Example 3. Determine whether each matrix has an inverse.

	0	2	-1]		[0	2	$\begin{bmatrix} -1\\1\\1 \end{bmatrix}$
(a)	3	-2	1	(b)	3	-2	1
	3	2	$ \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} $		3	2	1

Solution. (a) det(A) = 0. (b) $det(A) \neq 0$.

By the augmented matrix method $[A I_3]$, we have $A^{-1} = \begin{vmatrix} \frac{1}{3} & \frac{1}{3} & 0\\ 0 & -\frac{1}{4} & \frac{1}{4}\\ -1 & -\frac{1}{2} & \frac{1}{2} \end{vmatrix}$.

$$|A^{-1}| = \begin{vmatrix} \frac{1}{3} & 0 & 0\\ 0 & -\frac{1}{4} & \frac{1}{4}\\ -1 & \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{3} \begin{vmatrix} -\frac{1}{4} & \frac{1}{4}\\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = -\frac{1}{12}$$

Theorem 3.8. If A is an $n \times n$ invertible matrix, then $det(A^{-1}) = \frac{1}{det(A)}$.

Example 4. Find $|A^{-1}|$ for the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0 \end{bmatrix}$.

Solution. $|A| = 4 \Rightarrow |A^{-1}| = \frac{1}{4}$. Check: $(A I_3)$ -method $\Rightarrow A^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{3}{4} & \frac{3}{4} \\ 1 & -\frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$. $\begin{vmatrix} -\frac{1}{2} & \frac{3}{4} & \frac{3}{4} \\ 1 & -\frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix} = \begin{vmatrix} -\frac{1}{2} & \frac{3}{4} & 0 \\ 1 & -\frac{3}{2} & 1 \\ \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} \end{vmatrix} = (-1)\begin{pmatrix} \frac{1}{8} - \frac{3}{8} \end{pmatrix} = \frac{1}{4}.$ Equivalent Conditions for a Nonsingular Matrix. If A is an $n \times n$ matrix, then the statements below are equivalent.

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $n \times 1$ column matrix \mathbf{b} .
- 3. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 4. A is row equivalent to I_n .
- 5. A can be written as the product of elementary matrices.
- 6. det(A) \neq 0.

Proof. We show $(1) \Leftrightarrow (2)$.

First, show (1) \Rightarrow (2). If A is invertible, then A^{-1} exists. The equation $A\mathbf{x} = \mathbf{b}$ has one and only solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Conversely, show (2) \Rightarrow (1). Assume for any **b**, $A\mathbf{x} = \mathbf{b}$ has a (unique) solution. We take $\mathbf{b} = \mathbf{0}$, then the system $A\mathbf{x} = \mathbf{0}$ has a (unique) solution, namely, the trivial solution. To show A is invertible, we row reduce A into an echelon form $\tilde{A} = (\tilde{a}_{ij})_{n \times n}$. Then on the last row of \tilde{A} we must have a leading $\tilde{a}_{nn} = 1$; otherwise there will be infinitely many solutions due to a free variable x_n .

Now since A is row equivalent to an upper diagonal matrix with leading 1's on the main diagonal. We see A is is row equivalent to an identity matrix. That is A, is invertible. \Box

Example 5. Which of the systems has a unique solution?

(a)
$$2x_2 - x_3 = -1$$

 $3x_1 - 2x_2 + x_3 = 4$
 $3x_1 + 2x_2 - x_3 = -4$
(b) $2x_2 - x_3 = -1$
 $3x_1 - 2x_2 + x_3 = 4$
 $3x_1 + 2x_2 - x_3 = -4$

[Solution] (a) det(A) = 0, (b) $det(A) = -12 \Rightarrow$ the system (b) has an unique solution.

Theorem 3.9. If A is a square matrix, then $det(A) = det(A^T)$.

Proof. One can verify the theorem by considering some concrete example, say, $A = \begin{bmatrix} 0 & 1 & 4 \\ -1 & 1 & 0 \\ 2 & 6 & 3 \end{bmatrix}$

APPENDIX A. PROOF OF THEOREM 3.8

Proof of Theorem 3.8. Elementary matrices are of the following three forms (2 by 2):

$$E_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad E_{2} = \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix} \quad (c \neq 0) \quad and \quad E_{3} = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
$$E_{1}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad E_{2}^{-1} = \begin{bmatrix} c^{-1} & 0 \\ 0 & 1 \end{bmatrix} \quad and \quad E_{3}^{-1} = \begin{bmatrix} 1 & 0 \\ -k & 1 \end{bmatrix}$$

We see each E_i^{-1} has a determinant $\det(E_i^{-1}) = (\det(E_i))^{-1}$ for $i = 1, \ldots, q$.

If $A = E_1 \cdots E_q$ are product of elementary matrices, then $A^{-1} = E_q^{-1} \cdots E_1^{-1}$. Hence $\det(A^{-1}) = \det(E_q^{-1}) \cdots \det(E_1^{-1})$ $= \det(E_q)^{-1} \cdots \det(E_1)^{-1}$ $= (\det(E_q) \cdots \det(E_1))^{-1} = (\det(A))^{-1}.$

Ex. Cengage