In 3.2 we discussed using elementary row/column operations to evaluate the determinant of a matrix.

§3.3 Properties of Determinants

Theorem 3.5. If A and B are square matrices of order n, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
Theorem 3.6. If A is a square matrix of order n and c is a scalar, then the determinant of $c A$ is $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$.

Theorem 3.7. A square matrix A is invertible (nonsingular) if and only if $\operatorname{det}(A) \neq 0$.
Example 3. Determine whether each matrix has an inverse.
(a) $\left[\begin{array}{ccc}0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1\end{array}\right]$

Solution. (a) $\operatorname{det}(A)=0$.
(b) $\operatorname{det}(A) \neq 0$.

By the augmented matrix method $\left[A I_{3}\right]$, we have $A^{-1}=\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & -\frac{1}{4} & \frac{1}{4} \\ -1 & -\frac{1}{2} & \frac{1}{2}\end{array}\right]$.

$$
\left|A^{-1}\right|=\left|\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & -\frac{1}{4} & \frac{1}{4} \\
-1 & \frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{3}\left|\begin{array}{cc}
-\frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right|=-\frac{1}{12} .
$$

Theorem 3.8. If A is an $n \times n$ invertible matrix, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
Example 4. Find $\left|A^{-1}\right|$ for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0\end{array}\right]$.
Solution. $|A|=4 \Rightarrow\left|A^{-1}\right|=\frac{1}{4}$.
Check: $\left(A I_{3}\right)$-method $\Rightarrow A^{-1}=\left[\begin{array}{ccc}-\frac{1}{2} & \frac{3}{4} & \frac{3}{4} \\ 1 & -\frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}\end{array}\right]$.

$$
\left|\begin{array}{ccc}
-\frac{1}{2} & \frac{3}{4} & \frac{3}{4} \\
1 & -\frac{3}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right|=\left|\begin{array}{ccc}
-\frac{1}{2} & \frac{3}{4} & 0 \\
1 & -\frac{3}{2} & 1 \\
\frac{1}{2} & -\frac{1}{4} & 0
\end{array}\right|=(-1)^{2+3}\left|\begin{array}{cc}
-\frac{1}{2} & \frac{3}{4} \\
\frac{1}{2} & -\frac{1}{4}
\end{array}\right|=(-1)\left(\frac{1}{8}-\frac{3}{8}\right)=\frac{1}{4} .
$$

Equivalent Conditions for a Nonsingular Matrix. If A is an $n \times n$ matrix, then the statements below are equivalent.

1. A is invertible.
2. $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $n \times 1$ column matrix \mathbf{b}.
3. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
4. A is row equivalent to I_{n}.
5. A can be written as the product of elementary matrices.
6. $\operatorname{det}(A) \neq 0$.

Proof. We show (1) $\Leftrightarrow(2)$.
First, show $(1) \Rightarrow(2)$. If A is invertible, then A^{-1} exists. The equation $A \mathbf{x}=\mathbf{b}$ has one and only solution $\mathbf{x}=A^{-1} \mathbf{b}$.
Conversely, show (2) \Rightarrow (1). Assume for any $\mathbf{b}, A \mathbf{x}=\mathbf{b}$ has a (unique) solution. We take $\mathbf{b}=\mathbf{0}$, then the system $A \mathbf{x}=\mathbf{0}$ has a (unique) solution, namely, the trivial solution. To show A is invertible, we row reduce A into an echelon form $\tilde{A}=\left(\tilde{a}_{i j}\right)_{n \times n}$. Then on the last row of \tilde{A} we must have a leading $\tilde{a}_{n n}=1$; otherwise there will be infinitely many solutions due to a free variable x_{n}.
Now since A is row equivalent to an upper diagonal matrix with leading 1's on the main diagonal. We see A is is row equivalent to an identity matrix. That is A, is invertible.

Example 5. Which of the systems has a unique solution?
(a) $\quad 2 x_{2}-x_{3}=-1$
$3 x_{1}-2 x_{2}+x_{3}=4$
$3 x_{1}+2 x_{2}-x_{3}=-4$
(b) $\quad 2 x_{2}-x_{3}=-1$
$3 x_{1}-2 x_{2}+x_{3}=4$
$3 x_{1}+2 x_{2}+x_{3}=-4$
[Solution] (a) $\operatorname{det}(A)=0, \quad$ (b) $\operatorname{det}(A)=-12 \Rightarrow$ the system (b) has an unique solution.
Theorem 3.9. If A is a square matrix, then $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
Proof. One can verify the theorem by considering some concrete example, say, $A=\left[\begin{array}{ccc}0 & 1 & 4 \\ -1 & 1 & 0 \\ 2 & 6 & 3\end{array}\right]$

Appendix A. Proof of Theorem 3.8

Proof of Theorem 3.8. Elementary matrices are of the following three forms (2 by 2):

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad E_{2}=\left[\begin{array}{ll}
c & 0 \\
0 & 1
\end{array}\right] \quad(c \neq 0) \quad \text { and } \quad E_{3}=\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right] \\
& E_{1}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad E_{2}^{-1}=\left[\begin{array}{cc}
c^{-1} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad E_{3}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-k & 1
\end{array}\right] .
\end{aligned}
$$

We see each E_{i}^{-1} has a determinant $\operatorname{det}\left(E_{i}^{-1}\right)=\left(\operatorname{det}\left(E_{i}\right)\right)^{-1}$ for $i=1, \ldots, q$.

If $A=E_{1} \cdots E_{q}$ are product of elementary matrices, then $A^{-1}=E_{q}^{-1} \cdots E_{1}^{-1}$. Hence

$$
\begin{aligned}
& \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(E_{q}^{-1}\right) \cdots \operatorname{det}\left(E_{1}^{-1}\right) \\
= & \operatorname{det}\left(E_{q}\right)^{-1} \cdots \operatorname{det}\left(E_{1}\right)^{-1} \\
= & \left(\operatorname{det}\left(E_{q}\right) \cdots \operatorname{det}\left(E_{1}\right)\right)^{-1}=(\operatorname{det}(A))^{-1} .
\end{aligned}
$$

Ex. Cengage

