
Math 2160 (Elementary Linear Algebra) Instructor S. Zheng

In 3.2 we discussed using elementary row/column operations to evaluate the determinant of
a matrix.

§3.3 Properties of Determinants

Theorem 3.5. If A and B are square matrices of order n, then det(AB) = det(A)det(B).

Theorem 3.6. If A is a square matrix of order n and c is a scalar, then the determinant of
cA is det(cA) = cndet(A).

Theorem 3.7. A square matrix A is invertible (nonsingular) if and only if det(A) 6= 0.

Example 3. Determine whether each matrix has an inverse.

(a)

0 2 −1
3 −2 1
3 2 −1

 (b)

0 2 −1
3 −2 1
3 2 1


Solution. (a) det(A) = 0.
(b) det(A) 6= 0.
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Theorem 3.8. If A is an n× n invertible matrix, then det(A−1) =
1

det(A)
.

Example 4. Find |A−1| for the matrix A =

1 0 3
0 −1 2
2 1 0

.

Solution. |A| = 4⇒ |A−1| = 1
4
.
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Equivalent Conditions for a Nonsingular Matrix. If A is an n × n matrix, then the
statements below are equivalent.

1. A is invertible.
2. Ax = b has a unique solution for every n× 1 column matrix b.
3. Ax = 0 has only the trivial solution.
4. A is row equivalent to In.
5. A can be written as the product of elementary matrices.
6. det(A) 6= 0.

Proof. We show (1) ⇔ (2).
First, show (1)⇒ (2). If A is invertible, then A−1 exists. The equation Ax = b has one and
only solution x = A−1b.
Conversely, show (2) ⇒ (1). Assume for any b, Ax = b has a (unique) solution. We take
b = 0, then the system Ax = 0 has a (unique) solution, namely, the trivial solution. To
show A is invertible, we row reduce A into an echelon form Ã = (ãij)n×n. Then on the last

row of Ã we must have a leading ãnn = 1; otherwise there will be infinitely many solutions
due to a free variable xn.
Now since A is row equivalent to an upper diagonal matrix with leading 1’s on the main
diagonal. We see A is is row equivalent to an identity matrix. That is A, is invertible. �

Example 5. Which of the systems has a unique solution?

(a) 2x2 − x3 = −1 (b) 2x2 − x3 = −1

3x1 − 2x2 + x3 = 4 3x1 − 2x2 + x3 = 4

3x1 + 2x2 − x3 = −4 3x1 + 2x2 + x3 = −4

[Solution] (a) det(A) = 0, (b) det(A) = −12⇒ the system (b) has an unique solution.

Theorem 3.9. If A is a square matrix, then det(A) = det(AT ).

Proof. One can verify the theorem by considering some concrete example, say, A =

 0 1 4
−1 1 0
2 6 3
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Appendix A. Proof of Theorem 3.8

Proof of Theorem 3.8. Elementary matrices are of the following three forms (2 by 2):

E1 =

[
0 1
1 0

]
E2 =

[
c 0
0 1

]
(c 6= 0) and E3 =

[
1 0
k 1

]
E−1

1 =

[
0 1
1 0

]
E−1

2 =

[
c−1 0
0 1

]
and E−1

3 =

[
1 0
−k 1

]
.

We see each E−1
i has a determinant det(E−1

i ) = (det(Ei))
−1 for i = 1, . . . , q.



If A = E1 · · ·Eq are product of elementary matrices, then A−1 = E−1
q · · ·E−1

1 . Hence

det(A−1) = det(E−1
q ) · · · det(E−1

1 )

= det(Eq)
−1 · · · det(E1)

−1

= (det(Eq) · · · det(E1))
−1 = (det(A))−1 .

�

Ex. Cengage

http://cengagebrain.com/

	Appendix A. Proof of Theorem 3.8

