Math 2160 (Elementary Linear Algebra)

Instructor S. Zheng

§4.1 Vectors in \mathbb{R}^n

Example 1. (a) Represent $\mathbf{u} = (2,3)$ in the plane.

Example 2. Find the vector sum $\mathbf{u} + \mathbf{v}$ for (a) $\mathbf{u} = (1, 4)$ and $\mathbf{v} = (2, -2)$.

Example 3. Let $\mathbf{v} = (-2, 5)$ and $\mathbf{u} = (3, 4)$. Perform each vector operation.

(a)
$$\frac{1}{2}\mathbf{v}$$
 (b) $\mathbf{u} - \mathbf{v}$ (c) $\frac{1}{2}\mathbf{v} + \mathbf{u}$

Definition. Let $\mathbf{u} = (u_1, u_2, u_3, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, v_3, \dots, v_n)$ be vectors in \mathbb{R}^n and let c be a real number. The sum of \mathbf{u} and \mathbf{v} is the vector

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3, \cdots, u_n + v_n)$$

and the scalar multiple of \mathbf{u} by c is the vector

(a) **u**

$$c\mathbf{u} = (cu_1, cu_2, cu_3, \cdots, cu_n).$$

(c) $\mathbf{v} - 2\mathbf{u}$

Example 4. Let $\mathbf{u} = (-1, 0, 1)$ and $\mathbf{v} = (2, -1, 5)$ in \mathbb{R}^3 . Perform each vector operation.

$$+\mathbf{v}$$
 (b) $2\mathbf{u}$

Theorem 4.2. Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c and d be scalars.

1. $\mathbf{u} + \mathbf{v}$ is a vector in \mathbb{R}^n .6. $c\mathbf{u}$ is a vector in \mathbb{R}^n .2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ 4. $\mathbf{u} + \mathbf{0} = \mathbf{u}$ 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$ 5. $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ 10. $1(\mathbf{u}) = \mathbf{u}$

Example 5. Let $\mathbf{u} = (2, -1, 5, 0)$, $\mathbf{v} = (4, 3, 1, -1)$, and $\mathbf{w} = (-6, 2, 0, 3)$ be vectors in \mathbb{R}^4 . Find \mathbf{x} using equation (b) $3(\mathbf{x} + \mathbf{w}) = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$.

[ans: $\mathbf{x} = \frac{1}{2}(2\mathbf{u} - \mathbf{v} - 3\mathbf{w}) = (9, -\frac{11}{2}, \frac{9}{2}, -4)$]

Theorem 4.3. Let v be a vector in \mathbb{R}^n , and let c be a scalar. Then the properties below are true.

1. The additive identity is unique. That is, if $\mathbf{v} + \mathbf{u} = \mathbf{v}$, then $\mathbf{u} = \mathbf{0}$.

2. The additive inverse of **v** is unique. That is, if $\mathbf{v} + \mathbf{u} = \mathbf{0}$, then $\mathbf{u} = -\mathbf{v}$.

3. $0\mathbf{v} = \mathbf{0}$ 4. $c\mathbf{0} = \mathbf{0}$ 5. If $c\mathbf{v} = \mathbf{0}$, then c = 0 or $\mathbf{v} = \mathbf{0}$. 6. $-(-\mathbf{v}) = \mathbf{v}$

§4.2 Vector Spaces

Definition. Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and every scalar c and d, then V is a vector space.

1. $\mathbf{u} + \mathbf{v}$ is in V.2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ 4. V has a zero vector 0 such that for every \mathbf{u} in V, $\mathbf{u} + \mathbf{0} = \mathbf{u}$.5. For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.6. $c\mathbf{u}$ is in V.7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$

Ex. Cengage