§4.1 Vectors in R^{n}

Example 1. (a) Represent $\mathbf{u}=(2,3)$ in the plane.
Example 2. Find the vector sum $\mathbf{u}+\mathbf{v}$ for (a) $\mathbf{u}=(1,4)$ and $\mathbf{v}=(2,-2)$.
Example 3. Let $\mathbf{v}=(-2,5)$ and $\mathbf{u}=(3,4)$. Perform each vector operation.
(a) $\frac{1}{2} \mathbf{v}$
(b) $\mathbf{u}-\mathbf{v}$
(c) $\frac{1}{2} \mathbf{v}+\mathbf{u}$

Definition. Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, \cdots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right)$ be vectors in R^{n} and let c be a real number. The sum of \mathbf{u} and \mathbf{v} is the vector

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}, \cdots, u_{n}+v_{n}\right)
$$

and the scalar multiple of \mathbf{u} by c is the vector

$$
c \mathbf{u}=\left(c u_{1}, c u_{2}, c u_{3}, \cdots, c u_{n}\right) .
$$

Example 4. Let $\mathbf{u}=(-1,0,1)$ and $\mathbf{v}=(2,-1,5)$ in R^{3}. Perform each vector operation.
(a) $\mathbf{u}+\mathbf{v}$
(b) $2 \mathbf{u}$
(c) $\mathbf{v}-2 \mathbf{u}$

Theorem 4.2. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in R^{n}, and let c and d be scalars.

1. $\mathbf{u}+\mathbf{v}$ is a vector in R^{n}.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u}$ is a vector in R^{n}.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Example 5. Let $\mathbf{u}=(2,-1,5,0), \mathbf{v}=(4,3,1,-1)$, and $\mathbf{w}=(-6,2,0,3)$ be vectors in R^{4}. Find \mathbf{x} using equation (b) $3(\mathbf{x}+\mathbf{w})=2 \mathbf{u}-\mathbf{v}+\mathbf{x}$.
[ans: $\mathbf{x}=\frac{1}{2}(2 \mathbf{u}-\mathbf{v}-3 \mathbf{w})=\left(9,-\frac{11}{2}, \frac{9}{2},-4\right)$]
Theorem 4.3. Let \mathbf{v} be a vector in R^{n}, and let c be a scalar. Then the properties below are true.

1. The additive identity is unique. That is, if $\mathbf{v}+\mathbf{u}=\mathbf{v}$, then $\mathbf{u}=\mathbf{0}$.
2. The additive inverse of \mathbf{v} is unique. That is, if $\mathbf{v}+\mathbf{u}=\mathbf{0}$, then $\mathbf{u}=-\mathbf{v}$.
3. $0 \mathbf{v}=\mathbf{0}$
4. $c \mathbf{0}=\mathbf{0}$
5. If $c \mathbf{v}=\mathbf{0}$, then $c=0$ or $\mathbf{v}=\mathbf{0}$.
6. $-(-\mathbf{v})=\mathbf{v}$

Definition. Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and every scalar c and d, then V is a vector space.

1. $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. V has a zero vector $\mathbf{0}$ such that for every \mathbf{u} in $V, \mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For every u in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. $c \mathbf{u}$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Ex. Cengage

