M 2160 (Elementary LA)
course web

## §4.2 Vector Spaces (Continued)

Example 3. Show that the set of all $2 \times 3$ matrices with the operations of matrix addition and scalar multiplication is a vector space.

Example 4. Let $P_{2}$ be the set of all polynomials of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$, where $a_{0}, a_{1}$, and $a_{2}$ are real numbers. The sum of two polynomials $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $q(x)=b_{0}+b_{1} x+b_{2} x^{2}$ is defined in the usual way,

$$
p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}
$$

and the scalar multiple of $p(x)$ by the scalar $c$ is defined by

$$
c p(x)=c a_{0}+c a_{1} x+c a_{2} x^{2} .
$$

Show that $P_{2}$ is a vector space.
Example 5. Let $C(-\infty, \infty)$ be the set of all real-valued continuous functions defined on the entire real line. Addition is defined by $(f+g)(x)=f(x)+g(x)$. Scalar multiplication is defined by $(c f)(x)=c[f(x)]$. Show that $C(-\infty, \infty)$ is a vector space.

Theorem 4.4. Let $\mathbf{v}$ be any element of a vector space $V$, and let $c$ be any scalar. Then the properties below are true.

1. $0 \mathrm{v}=0$
2. $c \mathbf{0}=\mathbf{0}$
3. If $c \mathbf{v}=\mathbf{0}$, then $c=0$ or $\mathbf{v}=\mathbf{0}$.
4. $(-1) \mathbf{v}=-\mathbf{v}$.

Example 6. The set of all integers (with the standard operations) does not form a vector space.

Example 7. The set of all second-degree polynomials is not a vector space.
Example 8. Let $V=R^{2}$, the set of all ordered pairs of real numbers, with the standard operation of addition and the nonstandard definition of scalar multiplication $c\left(x_{1}, x_{2}\right)=\left(c x_{1}, 0\right)$. Show that $V$ is not a vector space.

## §4.3 Subspaces of Vector Spaces

Definition. A nonempty subset $W$ of a vector space $V$ is a subspace of $V$ when $W$ is a vector space under the operations of addition and scalar multiplication defined in $V$.

Example 1. Show that the set $W=\left\{\left(x_{1}, 0, x_{3}\right): x_{1}\right.$ and $x_{3}$ are real numbers $\}$ is a subspace of $R^{3}$ with the standard operations.

Theorem 4.5. If $W$ is a nonempty subset of a vector space $V$, then $W$ is a subspace of $V$ if and only if the two closure conditions listed below hold.

1. If $\mathbf{u}$ and $\mathbf{v}$ are in $W$, then $\mathbf{u}+\mathbf{v}$ is in $W$.
2. If $\mathbf{u}$ is in $W$ and $c$ is any scalar, then $c \mathbf{u}$ is in $W$.

Example 2. Let $W$ be the set of all $2 \times 2$ symmetric matrices. Show that $W$ is a subspace of the vector space $M_{2,2}$, with the standard operations of matrix addition and scalar multiplication.

Example 3. Let $W$ be the set of singular matrices of order 2 . Show that $W$ is not a subspace of $M_{2,2}$ with the standard operations.

Example 4. Show that $W=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0\right.$ and $\left.x_{2} \geq 0\right\}$, with the standard operations, is not a subspace of $R^{2}$.

Example 6. Determine whether each subset is a subspace of $R^{2}$.
$\begin{array}{ll}\text { (a) The set of points on the line } x+2 y=0 & \text { (b) The set of points on the line } x+2 y=1\end{array}$
Example 8. Determine whether each subset is a subspace of $R^{3}$.
(a) $W=\left\{\left(x_{1}, x_{2}, 1\right): x_{1}\right.$ and $x_{2}$ are real numbers $\}$
(b) $W=\left\{\left(x_{1}, x_{1}+x_{3}, x_{3}\right): x_{1}\right.$ and $x_{3}$ are real numbers $\}$

## §4.4 Spanning Sets and Linear Independence

Definition. A vector $\mathbf{v}$ in a vector space $V$ is a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}$ in $V$ when $\mathbf{v}$ can be written in the form $\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots c_{k} \mathbf{u}_{k}$ where $c_{1}, c_{2}, \cdots, c_{k}$ are scalars.

Example 1. (a) For the set of vectors $S=\{(1,3,1),(0,1,2),(1,0,-5)\}$ in $R^{3}$, the first vector is a linear combination of the other two.

Example 2. Write the vector $\mathbf{w}=(1,1,1)$ as a linear combination of vectors in the set $S=\{(1,2,3),(0,1,2),(-1,0,1)\}$.

Example 3. If possible, write the vector $\mathbf{w}=(1,-2,2)$ as a linear combination of vectors in the set $S$ in Example 2.

Definition. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ be a subset of a vector space $V$. The set $S$ is a spanning set of $V$ when every vector in $V$ can be written as a linear combination of vectors in $S$. In such cases it is said that $S$ spans $V$.

Example 5. Show that the set $S=\{(1,2,3),(0,1,2),(-2,0,1)\}$ spans $R^{3}$.

## Cengage

