§4.4 Spanning Sets and Linear Independence (Continued)

Definition. If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S,

$$
\operatorname{span}(S)=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}: c_{1}, c_{2}, \cdots, c_{k} \text { are real numbers }\right\} .
$$

The span of S is denoted by $\operatorname{span}(S)$ or $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$. When $\operatorname{span}(S)=V$, it is said that V is spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$, or that S spans V.

Theorem 4.7. If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ is a set of vectors in a vector space V, then $\operatorname{span}(S)$ is a subspace of V. Moreover, $\operatorname{span}(S)$ is the smallest subspace of V that contains S, in the sense that every other subspace of V that contains S must contain $\operatorname{span}(S)$.

Definition. A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ in a vector space V is linearly independent when the vector equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$ has only the trivial solution $c_{1}=0, c_{2}=0, \cdots, c_{k}=0$. If there are also nontrivial solutions, then S is linearly dependent.

Example 7. The followings are examples of linearly dependent sets.
(a) $S=\{(1,2),(2,4)\}$
(b) $S=\{(1,0),(0,1),(-2,5)\}$

Example 8. Determine whether the set of vectors in R^{3} is linearly independent.

$$
S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\{(1,2,3),(0,1,2),(-2,0,1)\}
$$

Example 9. Determine whether the set of vectors in P_{2} is linearly independent.

$$
S=\left\{1+x-2 x^{2}, 2+5 x-x^{2}, x+x^{2}\right\}
$$

Theorem 4.8. A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}, k \geq 2$, is linearly dependent if and only if at least one of the vectors \mathbf{v}_{i} can be written as a linear combination of the other vectors in S.

§4.5 Basis and Dimension

Definition. A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ in a vector space V is a basis for V when the conditions below are true.

1. S spans V 2. S is linearly independent.

Example 1. Show that the set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis for R^{3}.
Example 2. Show that the set $S=\{(1,1),(1,-1)\}$ is a basis for R^{2}.
Example 4. Show that the vector space P_{3} has the basis $S=\left\{1, x, x^{2}, x^{3}\right\}$.

Theorem 4.9. If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S.

Theorem 4.10. If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent.

Example 7. (b) P_{3} has a basis consisting of four vectors, so the set

$$
S=\left\{1,1+x, 1-x, 1+x+x^{2}, 1-x+x^{2}\right\}
$$

must be linearly dependent.
Theorem 4.11. If a vector space V has one basis with n vectors, then every basis for V has n vectors.

Definition. If a vector space V has a basis consisting of n vectors, then the number n is the dimension of V, denoted by $\operatorname{dim}(V)=n$. When V consists of the zero vector alone, the dimension of V is defined as zero.

Example 9. Find the dimension of the subspace of R^{3}.
(a) $W=\{(d, c-d, c): c$ and d are real numbers $\}$

Example 11. Let W be the subspace of all symmetric matrices in $M_{2,2}$. What is the dimension of W ?

Solution. Each vector in $V \subset M_{2,2}$ consisting of all symmetric matrices has the form

$$
\left[\begin{array}{ll}
a & b \tag{1}\\
b & c
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Ex. (§4.5, \# 17) Determine if $S=\{(7,0,3),(8,-4,1)\}$ is a basis in \mathbb{R}^{3}.
[Solution] Consider $B=\{(1,0,0),(0,1,0),(0,0,1)\}$ as a basis in \mathbb{R}^{3}. We see the dimension of $V=\mathbb{R}^{3}$ is $d=3$. However, S has only two vectors, and so it is not a basis.
Ex. ($\S 4.5, \# 27)$ Determine if the set S is a basis in M_{22} :

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
8 & -4 \\
-4 & 3
\end{array}\right]\right\}
$$

[Solution] Recall that a set S is a basis in V provided
(1) S spans V;
(2) S is linearly independent.

We can see the fourth matrix is a linear combination of the other three.

$$
\begin{align*}
& {\left[\begin{array}{cc}
8 & -4 \\
-4 & 3
\end{array}\right]=c_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c_{3}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } \tag{2}\\
= & {\left[\begin{array}{cc}
c_{1}+c_{3} & c_{2} \\
c_{2} & c_{3}
\end{array}\right] . } \tag{3}
\end{align*}
$$

Now comparing the corresponding components (entry values) of the matrices in both sides of the above equation, we obtain

$$
\begin{align*}
& c_{1}+c_{3}=8 \Rightarrow c_{1}=5 \tag{4}\\
& c_{2}=-4 \tag{5}\\
& c_{3}=3 \tag{6}
\end{align*}
$$

So, the set S is linearly dependent. Thus we can infer S is not a basis for $M_{2,2}$.
Method II. (growth mindset)
[Solution] Input the matrices into a matrix. Since the determinant of the matrix equals zero, it is linearly dependent and does not span $M_{2,2}$.

$$
\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7}\\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
8 & -4 & -4 & 3
\end{array}\right|=0
$$

In the above we give the definitions of basis and dimension of
*Summary. a given vector space.
We show how to determine a set of vectors to be a basis or not a basis in the context of $\mathbb{R}^{n}, P_{n}, M_{m n}$.

§4.6* Rank of a Matrix and Systems of Linear Equations

Definition. The dimension of the row (or column) space of a matrix A is the rank of A and is denoted by $\operatorname{rank}(A)$.
Example 6. Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & -2 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ 0 & 1 & 3 & 5\end{array}\right]$.
Theorem 4.16. If A is an $m \times n$ matrix, then the set of all solutions of the homogeneous system of linear equations $A \mathbf{x}=\mathbf{0}$ is a subspace of R^{n} called the nullspace of A and is denoted by $N(A)$. So, $N(A)=\left\{\mathbf{x} \in R^{n}: A \mathbf{x}=\mathbf{0}\right\}$. The dimension of the nullspace of A is the nullity of A.

Example 7. Find the nullspace of the matrix $A=\left[\begin{array}{cccc}1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3\end{array}\right]$.
Theorem 4.17.* If A is an $m \times n$ matrix of rank r, then the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$ is $n-r$. That is, $n=\operatorname{rank}(A)+\operatorname{nullity}(A)$.

Cengage. Sample assignment. WebAssign: List of all sections

§4.7* Coordinates and Change of Basis

Definition. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ be an ordered basis for a vector space V and let \mathbf{x} be a vector in V such that $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$. The scalars $c_{1}, c_{2}, \cdots, c_{n}$ are the coordinates of x relative to the basis B. The coordinate matrix (or coordinate vector) of \mathbf{x} relative to \boldsymbol{B} is the column matrix in R^{n} whose components are the coordinates of \mathbf{x}.

$$
[\mathbf{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Example 1. Find the coordinate matrix of $\mathbf{x}=(-2,1,3)$ in R^{3} relative to the standard basis $S=\{(1,0,0),(0,1,0),(0,0,1)\}$.

Example 2. The coordinate matrix of \mathbf{x} in R^{2} relative to the ordered basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=$ $\{(1,0),(1,2)\}$ is $[\mathbf{x}]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Find the coordinate matrix of \mathbf{x} relative to the standard basis $B^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\{(1,0),(0,1)\}$.

Example 3. Find the coordinate matrix of $\mathbf{x}=(1,2,-1)$ in R^{3} relative to the basis $B^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\{(1,0,1),(0,-1,2),(2,3,-5)\}$.
$\S 4.8^{* *}$ Applications of Vector Spaces

