§5.1 Length and Dot Product in R^{n}

Definition. The length, or norm, of a vector $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in R^{n} is $\|\mathbf{v}\|=$ $\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$. The length of a vector is also called its magnitude. If $\|\mathbf{v}\|=1$, then the vector \mathbf{v} is a unit vector.

Example 1. (a) In R^{5}, the length of $\mathbf{v}=(0,-2,1,4,-2)$ is $\|\mathbf{v}\|=5$.
Theorem 5.1. Let \mathbf{v} be a vector in R^{n} and let c be a scalar. Then $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$, where $|c|$ is the absolute value of c.

Theorem 5.2. If \mathbf{v} is a nonzero vector in R^{n}, then the vector $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$ has length 1 and has the same direction as \mathbf{v}. This vector \mathbf{u} is the unit vector in the direction of \mathbf{v}.

Example 2. Find the unit vector in the direction of $\mathbf{v}=(3,-1,2)$, and verify that this vector has length 1.

Definition. The distance between two vectors \mathbf{u} and \mathbf{v} in R^{n} is $d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|$.
Example 3. (c) The distance between $\mathbf{u}=(3,-1,0,-3)$ and $\mathbf{v}=(4,0,1,2)$ is $2 \sqrt{7}$.
Definition. The dot product of $\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is the scalar quantity $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}$.

Example 4. The dot product of $\mathbf{u}=(1,2,0,-3)$ and $\mathbf{v}=(3,-2,4,2)$ is -7 .
Theorem 5.3. If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n} and c is a scalar, then the properties listed below are true.

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
3. $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
4. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
$5 . \mathbf{v} \cdot \mathbf{v} \geq 0$, and $\mathbf{v} \cdot \mathbf{v}=0$ if and only if $\mathbf{v}=\mathbf{0}$.

Example 6. Consider two vectors \mathbf{u} and \mathbf{v} in R^{n} such that $\mathbf{u} \cdot \mathbf{u}=39, \mathbf{u} \cdot \mathbf{v}=-3$, and $\mathbf{v} \cdot \mathbf{v}=79$. Evaluate $(\mathbf{u}+2 \mathbf{v}) \cdot(3 \mathbf{u}+\mathbf{v})$.

Definition. The angle θ between two nonzero vectors in R^{n} can be found using $\cos \theta=$ $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}, 0 \leq \theta \leq \pi$.
Example 8. The angle between $\mathbf{u}=(-4,0,2,-2)$ and $\mathbf{v}=(2,0,-1,1)$ is π.
Definition. Two vectors \mathbf{u} and \mathbf{v} in R^{n} are orthogonal when $\mathbf{u} \cdot \mathbf{v}=0$.

Example 9. (b) The vectors $\mathbf{u}=(3,2,-1,4)$ and $\mathbf{v}=(1,-1,1,0)$ are orthogonal.
Ex. \# 41 Find the angle between two vectors.

$$
\begin{aligned}
& \mathbf{u}=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right) \\
& \mathbf{v}=\left(\cos \frac{3 \pi}{4}, \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

Ex. \# 45 Find the angle between two vectors.

$$
\begin{aligned}
& \mathbf{u}=(0,1,0,1) \\
& \mathbf{v}=(3,3,3,3)
\end{aligned}
$$

§5.2 Inner Product Spaces

Definition. Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V, such that $\mathbf{v} \neq \mathbf{0}$. Then the orthogonal projection of \mathbf{u} onto \mathbf{v} is $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$.

Goal:
(1) Determine whether a function defines an inner product, and find the inner product of two vectors in $\mathbb{R}^{n}, M_{m n}, C[a, b]$.
(2) Find an orthogonal projection of a vector onto another vector in an inner product space.
Example 10. Use the Euclidean inner product in R^{3} to find the orthogonal projection of $\mathbf{u}=(6,2,4)$ onto $\mathbf{v}=(1,2,0)$.

Cengage Sample assignment. WebAssign: List of all sections

§5.3* Orthonormal Bases: Gram-Schmidt Process

Definition. A set S of vectors in an inner product space V is orthogonal when every pair of vectors in S is orthogonal. If, in addition, each vector in the set is a unit vector, then S is orthonormal.

0.1. Find the angle using inner product.

$$
\cos \theta=\frac{\langle u, v\rangle}{\|u\|\|v\|} \Rightarrow \begin{cases}>0 & \text { if } \theta \text { is acute } \tag{1}\\ =0 & \text { if } \theta \text { is right angle } \\ <0 & \text { if } \theta \text { is obtuse }\end{cases}
$$

0.2. Projection formula with inner product.

$$
\begin{equation*}
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} . \tag{2}
\end{equation*}
$$

(A) $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=a \mathbf{v}, a>0$

(B) $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=a \mathbf{v}, a<0$
0.3. Gram-Schmidt orthonomalization*. Ex. \# 3. (a) Determine whether the set of vectors in \mathbb{R}^{2} is orthogonal;
(b) if the set is orthogonal, then determine whether it is also orthonormal, and
(c) determine whether the set is a basis for R^{2}.

$$
\begin{equation*}
\left\{\left(\frac{3}{5}, \frac{4}{5}\right),\left(-\frac{4}{5}, \frac{3}{5}\right)\right\} \tag{3}
\end{equation*}
$$

Example 7*. Apply the Gram-Schmidt orthonormalization process to the basis B for \mathbb{R}^{3}.

$$
\begin{equation*}
B=\{(1,1,0),(1,2,0),(0,1,2)\} \tag{4}
\end{equation*}
$$

Solution. Applying the Gram-Schmidt orthonormalization process produces

$$
\begin{aligned}
& w_{1}=v_{1}=(1,1,0) \\
& w_{2}=v_{2}-\frac{v_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}=\left(-\frac{1}{2}, \frac{1}{2}, 0\right) \\
& w_{3}=v_{3}-\frac{v_{3} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}-\frac{v_{3} \cdot w_{2}}{w_{2} \cdot w_{2}} w_{2}=(0,0,2)
\end{aligned}
$$

The set $\tilde{B}=\left\{w_{1}, w_{2}, w_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}. Normalizing each vector in B^{\prime} produces the following orthonormal basis

$$
\begin{aligned}
& u_{1}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& u_{2}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& u_{3}=(0,0,1)
\end{aligned}
$$

