A systematic way of synchronously organizing lecture notes by summarizing the text and connecting to the virtual assignment

§5.3* Orthonormal Bases: Gram-Schmidt Process (Continued)

Example 1. Show that the set is an orthonormal basis for R^{3}.

$$
S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2 \sqrt{2}}{3}\right),\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right)\right\}
$$

Theorem 5.10. If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.

Theorem 5.11. If $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is an orthonormal basis for an inner product space V, then the coordinate representation of a vector \mathbf{w} relative to B is

$$
\mathbf{w}=\left(\mathbf{w} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}+\left(\mathbf{w} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{2}+\cdots+\left(\mathbf{w} \cdot \mathbf{v}_{n}\right) \mathbf{v}_{n}
$$

Theorem 5.12* (Gram-Schmidt Orthonormalization Process).

1. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ be a basis for an inner product space V.
2. Let $B^{\prime}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{n}\right\}$, where

$$
\begin{aligned}
\mathbf{w}_{1} & =\mathbf{v}_{1} \\
\mathbf{w}_{2} & =\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1} \\
\mathbf{w}_{3} & =\mathbf{v}_{3}-\frac{\mathbf{v}_{3} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}-\frac{\mathbf{v}_{3} \cdot \mathbf{w}_{2}}{\mathbf{w}_{2} \cdot \mathbf{w}_{2}} \mathbf{w}_{2} \\
& \vdots \\
\mathbf{w}_{n} & =\mathbf{v}_{n}-\frac{\mathbf{v}_{n} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}-\frac{\mathbf{v}_{n} \cdot \mathbf{w}_{2}}{\mathbf{w}_{2} \cdot \mathbf{w}_{2}} \mathbf{w}_{2}-\cdots-\frac{\mathbf{v}_{n} \cdot \mathbf{w}_{n-1}}{\mathbf{w}_{n-1} \cdot \mathbf{w}_{n-1}} \mathbf{w}_{n-1} .
\end{aligned}
$$

Then B^{\prime} is an orthogonal basis for V.
2. Let $\mathbf{u}_{i}=\frac{\mathbf{w}_{i}}{\left\|\mathbf{w}_{i}\right\|}$. Then $B^{\prime \prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}$ is an orthonormal basis for V. Also, $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}\right\}$ for $k=1,2, \cdots, n$.

Example 7*. Apply the Gram-Schmidt orthonormalization process to the basis B for R^{3}.

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\{(1,1,0),(1,2,0),(0,1,2)\}
$$

[Soluiton] From the handout 5.1-5.3, we saw that the Gram-Schmidt yields an orthonormal basis by means of projection

$$
\begin{aligned}
& \mathbf{u}_{1}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& \mathbf{u}_{2}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& \mathbf{u}_{3}=(0,0,1)
\end{aligned}
$$

such that $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\mathbb{R}^{3}$.
Ex. \#15. The set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is orthogonal but not orthonormal.

$$
\begin{equation*}
\{(\sqrt{3}, \sqrt{3}, \sqrt{3}),(-\sqrt{2}, 0, \sqrt{2})\} \tag{1}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
(\sqrt{3}, \sqrt{3}, \sqrt{3}) \cdot(-\sqrt{2}, 0, \sqrt{2})=-\sqrt{6}+0+\sqrt{6}=0 \tag{2}
\end{equation*}
$$

However,

$$
\begin{aligned}
& \left\|\mathbf{v}_{1}\right\|=\sqrt{9}=3 \neq 1 \\
& \left\|\mathbf{v}_{2}\right\|=2 \neq 1 .
\end{aligned}
$$

Normalize each vector to obtain an orthonormal set.

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{1}}=\frac{\mathbf{v}_{\mathbf{1}}}{\left\|\mathbf{v}_{\mathbf{1}}\right\|}=\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right) \\
& \mathbf{u}_{\mathbf{2}}=\frac{\mathbf{v}_{\mathbf{2}}}{\left\|\mathbf{v}_{\mathbf{2}}\right\|}=\frac{1}{2}(-\sqrt{2}, 0, \sqrt{2})=\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right) .
\end{aligned}
$$

Chapter 6*. Linear Transformations.
Chapter 7. Eigenvalues and Eigenvectors

§7.1 Eigenvalues and Eigenvectors

Definition. Let A be an $n \times n$ matrix. The scalar λ is an eigenvalue of A when there is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$. The vector \mathbf{x} is an eigenvector of A corresponding to λ.

Example 2. For the matrix $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$, verify that $\mathbf{x}_{1}=(-3,-1,1)$ and $\mathbf{x}_{2}=(1,0,0)$ are eigenvectors of A and find their corresponding eigenvalues.

Theorem 7.1. If A is an $n \times n$ matrix with an eigenvalue λ, then the set of all eigenvectors of λ, together with the zero vector, is a subspace of R^{n}. This subspace is the eigenspace of λ.

Theorem 7.2. Let A be an $n \times n$ matrix.

1. An eigenvalue of A is a scalar λ such that $\operatorname{det}(\lambda I-A)=0$.
2. The eigenvectors of A corresponding to λ are the nonzero solutions of $(\lambda I-A) \mathbf{x}=\mathbf{0}$.

Example 4. Find the eigenvalues and corresponding eigenvectors of $A=\left[\begin{array}{cc}2 & -12 \\ 1 & -5\end{array}\right]$.
Example 5. Find the eigenvalues and corresponding eigenvectors of $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(from the text) Verify that λ_{i} is an eigenvalue of A and that \mathbf{x}_{i} is a corresponding eigenvector. Ex.\# 5.

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & -1 & 2 \\
0 & 0 & 3
\end{array}\right] \\
\lambda_{1} & =2, \quad x_{1}=(1,0,0) \\
\lambda_{2} & =-1, \quad x_{2}=(1,-1,0) \\
\lambda_{3} & =3, \quad x_{3}=(5,1,2) .
\end{aligned}
$$

Ex. \# 7.

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \tag{3}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \lambda_{1}=1, \quad x_{1}=(1,1,1)
$$

Solution. Step 1. Solving $|\lambda-A|=\lambda^{3}-1=(\lambda-1)\left(\lambda^{2}+\lambda+1\right)=0$, we obtain $\lambda_{1}=1$ ($\lambda_{2,3}=\frac{-1 \pm \sqrt{3} i}{2}$, complex roots)
Step 2. Solve the homogeneous equation $(\lambda-A) X=0$ to find $E_{1}=\operatorname{span}\left\{(1,1,1)^{T}\right\}$.

§7.2 Diagonalization

Definition. An $n \times n$ matrix A is diagonalizable when A is similar to a diagonal matrix. That is, A is diagonalizable when there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.

Example 1. [3 by 3] The matrix $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$ is diagonalizable with $P=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Solution. Step 1. Find inverse of $P: P^{-1}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$.
Step 2. We see that $P^{-1} A P=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]$.

Theorem 7.4. If A and B are similar $n \times n$ matrices, then they have the same eigenvalues.
Ex. \#7.2.1. [2 by 2] Consider the matrices $A=\left[\begin{array}{cc}-7 & 24 \\ -2 & 7\end{array}\right], \quad P=\left[\begin{array}{cc}-3 & -4 \\ -1 & -1\end{array}\right]$.
(1) Verify that A is diagonalizable by computing $P^{-1} A P$.
(2) Use the result of part (a) and Theorem 7.4 to find the eigenvalues of A.

Solution. (a) The inverse $P^{-1}=\frac{1}{\operatorname{det}(P)}\left[\begin{array}{cc}-1 & 4 \\ 1 & -3\end{array}\right]=\left[\begin{array}{cc}1 & -4 \\ -1 & 3\end{array}\right]$. Then multiplying the matrices yields

$$
P^{-1} A P=\left[\begin{array}{cc}
1 & -4 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
-3 & 4 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]:=D
$$

(b) Part (a) shows that A is similar to D and D is a diagonal matrix having eigenvalues 1 and -1 . According to Theorem 7.4: Similar Matrices Have the Same Eigenvalues, we obtain that the eigenvalues of A are given by $\lambda_{1}=1, \lambda_{2}=-1$.

Theorem 7.5. An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
Example 4. Show that the matrix $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1\end{array}\right]$ is diagonalizable. Then find a matrix P such that $P^{-1} A P$ is diagonal.

Example 5.* Show that the matrix $A=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3\end{array}\right]$ is diagonalizable. Then find a matrix P such that $P^{-1} A P$ is diagonal.

Example 6. Show that the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ is not diagonalizable.
Theorem 7.6. If an $n \times n$ matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable.

Example 7. Determine whether A is diagonalizable.

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right]
$$

[Solution] Because A is a triangular matrix, its eigenvalues are the main diagonal entries $\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=-3$. Moreover, since these three are distinct, we conclude from Theorem 7.6 that A is diagonalizable.

Ex. $\# 3$. Verify that A is diagonalizable by computing $P^{-1} A P$.

$$
A=\left[\begin{array}{cc}
-2 & 4 \\
1 & 1
\end{array}\right] \quad P=\left[\begin{array}{cc}
1 & -4 \\
1 & 1
\end{array}\right]
$$

\# 12. Show that the matrix is not diagonalizable.

$$
\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

Solution. The equation $P^{-1} A P=D$ is equivalent to $A P=P D$, both of which are equivalent to

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \quad i=1, \ldots, n
$$

where λ_{i} and \mathbf{v}_{i} are couples of eigenvalue-eigenvectors

$$
D=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

and

$$
P=\left(\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right) .
$$

According to Theorem 7.5 and the above general paradigm, we solve for the eigenvectors or eigenspace(s). First $A=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$ is a lower triangular matrix, so the eigenvalues are all on the diagonal: $\lambda_{1}=\lambda_{2}=1$. To obtain the eigenvectors, we solve

$$
\begin{aligned}
& (1 \cdot I-A)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
\end{aligned}
$$

This translates to

$$
\left\{\begin{array} { l }
{ 0 = 0 } \\
{ 2 x _ { 1 } + 0 x _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=t
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

Thus the solution shows that the eigenspace corresponding to $\lambda=1$ is given by $E_{1}=$ $\operatorname{span}\left\{\binom{0}{1}\right\}$. Hence A has only one linearly independent eigenvector. This shows A is NOT diagonalizable by Th.7.5.

Example 10* How about the following: Diagonalizable or not diagonalizable?
(1) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(2) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

Cengage Sample assignment. WebAssign: List of all sections
[optional*] Some online video references on 7.1-7.2*:
Ex: Find the Eigenvalues and Corresponding Eigenvectors of a 2×2 Matrix
Ex: Find the Eigenvalues of a 3×3 Matrix
Ex: Find the Eigenvalues of a 4×4 Matrix
Ex**: Find the Corresponding Eigenvectors Given an Eigenvalues (Complex)

