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§5.3* Orthonormal Bases: Gram-Schmidt Process (Continued)

Example 1. Show that the set is an orthonormal basis for R3.
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Theorem 5.10. If S = {v1,v2, · · · ,vn} is an orthogonal set of nonzero vectors in an inner
product space V , then S is linearly independent.

Theorem 5.11. If B = {v1,v2, · · · ,vn} is an orthonormal basis for an inner product space
V , then the coordinate representation of a vector w relative to B is

w = (w · v1)v1 + (w · v2)v2 + · · ·+ (w · vn)vn.

Theorem 5.12* (Gram-Schmidt Orthonormalization Process).
1. Let B = {v1,v2, · · · ,vn} be a basis for an inner product space V .
2. Let B′ = {w1,w2, · · · ,wn}, where

w1 = v1

w2 = v2 −
v2 ·w1

w1 ·w1

w1

w3 = v3 −
v3 ·w1

w1 ·w1

w1 −
v3 ·w2

w2 ·w2

w2

...

wn = vn −
vn ·w1

w1 ·w1

w1 −
vn ·w2

w2 ·w2

w2 − · · · −
vn ·wn−1

wn−1 ·wn−1
wn−1.

Then B′ is an orthogonal basis for V .

2. Let ui =
wi

‖wi‖
. Then B′′ = {u1,u2, · · · ,un} is an orthonormal basis for V . Also,

span{v1,v2, · · · ,vk} = span{u1,u2, · · · ,uk} for k = 1, 2, · · · , n.

Example 7*. Apply the Gram-Schmidt orthonormalization process to the basis B for R3.

B = {v1,v2,v3} = {(1, 1, 0), (1, 2, 0), (0, 1, 2)}.
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[Soluiton] From the handout 5.1-5.3, we saw that the Gram-Schmidt yields an orthonormal
basis by means of projection
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u3 = (0, 0, 1)

such that span{u1,u2,u3} = span{v1,v2,v3} = R3.

Ex. #15. The set S = {v1,v2} is orthogonal but not orthonormal.
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However,

‖v1‖ =
√

9 = 3 6= 1

‖v2‖ = 2 6= 1.

Normalize each vector to obtain an orthonormal set.
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Chapter 6*. Linear Transformations.

Chapter 7. Eigenvalues and Eigenvectors

§7.1 Eigenvalues and Eigenvectors

Definition. Let A be an n× n matrix. The scalar λ is an eigenvalue of A when there is a
nonzero vector x such that Ax = λx. The vector x is an eigenvector of A corresponding
to λ.

Example 2. For the matrix A =

1 −2 1
0 0 0
0 1 1

, verify that x1 = (−3,−1, 1) and x2 = (1, 0, 0)

are eigenvectors of A and find their corresponding eigenvalues.

Theorem 7.1. If A is an n×n matrix with an eigenvalue λ, then the set of all eigenvectors
of λ, together with the zero vector, is a subspace of Rn. This subspace is the eigenspace of λ.

https://www.slader.com/textbook/9781305658004-elementary-linear-algebra-8e/


Theorem 7.2. Let A be an n× n matrix.
1. An eigenvalue of A is a scalar λ such that det(λI − A) = 0.
2. The eigenvectors of A corresponding to λ are the nonzero solutions of (λI − A)x = 0.

Example 4. Find the eigenvalues and corresponding eigenvectors of A =

[
2 −12
1 −5

]
.

Example 5. Find the eigenvalues and corresponding eigenvectors of A =

2 1 0
0 2 0
0 0 2

.

(from the text) Verify that λi is an eigenvalue of A and that xi is a corresponding eigenvector.
Ex.# 5.

A =

2 3 1
0 −1 2
0 0 3


λ1 = 2, x1 = (1, 0, 0)

λ2 = −1, x2 = (1,−1, 0)

λ3 = 3, x3 = (5, 1, 2).

Ex. # 7.

A =

0 1 0
0 0 1
1 0 0

 λ1 = 1, x1 = (1, 1, 1)(3)

Solution. Step 1. Solving |λ − A| = λ3 − 1 = (λ − 1)(λ2 + λ + 1) = 0, we obtain λ1 = 1

(λ2,3 = −1±
√
3i

2
, complex roots)

Step 2. Solve the homogeneous equation (λ− A)X = 0 to find E1 = span{(1, 1, 1)T}. �

§7.2 Diagonalization

Definition. An n× n matrix A is diagonalizable when A is similar to a diagonal matrix.
That is, A is diagonalizable when there exists an invertible matrix P such that P−1AP is a
diagonal matrix.

Example 1. [3 by 3] The matrix A =

1 3 0
3 1 0
0 0 −2

 is diagonalizable with P =

1 1 0
1 −1 0
0 0 1

.

Solution. Step 1. Find inverse of P : P−1 =

1
2

1
2

0
1
2
−1

2
0

0 0 1

.

Step 2. We see that P−1AP =

4 0 0
0 −2 0
0 0 −2

. �



Theorem 7.4. If A and B are similar n×n matrices, then they have the same eigenvalues.

Ex. #7.2.1. [2 by 2] Consider the matrices A =

[
−7 24
−2 7

]
, P =

[
−3 −4
−1 −1

]
.

(1) Verify that A is diagonalizable by computing P−1AP .
(2) Use the result of part (a) and Theorem 7.4 to find the eigenvalues of A.

Solution. (a) The inverse P−1 = 1
det(P )

[
−1 4
1 −3

]
=

[
1 −4
−1 3

]
. Then multiplying the ma-

trices yields

P−1AP =

[
1 −4
−1 3

] [
−3 4
−1 1

]
=

[
1 0
0 −1

]
:= D

(b) Part (a) shows that A is similar to D and D is a diagonal matrix having eigenvalues 1
and −1. According to Theorem 7.4: Similar Matrices Have the Same Eigenvalues,
we obtain that the eigenvalues of A are given by λ1 = 1, λ2 = −1. �

Theorem 7.5. An n×n matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors.

Example 4. Show that the matrix A =

 1 −1 −1
1 3 1
−3 1 −1

 is diagonalizable. Then find a

matrix P such that P−1AP is diagonal.

Example 5.* Show that the matrix A =


1 0 0 0
0 1 5 −10
1 0 2 0
1 0 0 3

 is diagonalizable. Then find a

matrix P such that P−1AP is diagonal.

Example 6. Show that the matrix A =

[
1 2
0 1

]
is not diagonalizable.

Theorem 7.6. If an n × n matrix A has n distinct eigenvalues, then the corresponding
eigenvectors are linearly independent and A is diagonalizable.

Example 7. Determine whether A is diagonalizable.

A =

1 −2 1
0 0 1
0 0 −3


[Solution] Because A is a triangular matrix, its eigenvalues are the main diagonal entries
λ1 = 1, λ2 = 0, λ3 = −3. Moreover, since these three are distinct, we conclude from
Theorem 7.6 that A is diagonalizable.

Ex.#3. Verify that A is diagonalizable by computing P−1AP .



A =

[
−2 4
1 1

]
P =

[
1 −4
1 1

]
# 12. Show that the matrix is not diagonalizable.[

1 0
−2 1

]
Solution. The equation P−1AP = D is equivalent to AP = PD, both of which are equivalent
to

Avi = λivi i = 1, . . . , n

where λi and vi are couples of eigenvalue-eigenvectors

D =

λ1 . . .
λn


and

P =
(
v1 · · · vn

)
.

According to Theorem 7.5 and the above general paradigm, we solve for the eigenvectors or

eigenspace(s). First A =

[
1 0
−2 1

]
is a lower triangular matrix, so the eigenvalues are all on

the diagonal: λ1 = λ2 = 1. To obtain the eigenvectors, we solve

(1 · I − A)

(
x1
x2

)
=

(
0
0

)
(

0 0
2 0

) (
x1
x2

)
=

(
0
0

)
This translates to {

0 = 0

2x1 + 0 x2 = 0
⇒

{
x1 = 0

x2 = t
t ∈ R

Thus the solution shows that the eigenspace corresponding to λ = 1 is given by E1 =

span{
(

0
1

)
}. Hence A has only one linearly independent eigenvector. This shows A is NOT

diagonalizable by Th.7.5. �

Example 10* How about the following: Diagonalizable or not diagonalizable ?

(1)

[
0 1
1 0

]
(2)

[
0 −1
1 0

]



Cengage Sample assignment. WebAssign: List of all sections

[optional*] Some online video references on 7.1-7.2*:

Ex: Find the Eigenvalues and Corresponding Eigenvectors of a 2× 2 Matrix
Ex: Find the Eigenvalues of a 3× 3 Matrix
Ex: Find the Eigenvalues of a 4× 4 Matrix
Ex**: Find the Corresponding Eigenvectors Given an Eigenvalues (Complex)

https://www.cengage.com/student/
http://demo.webassign.net/web/Student/Assignment-Responses/submit?dep=3778
https://www.webassign.net/textbooks/larlinalg8/details.html
https://youtu.be/GqCP9STFnt4
https://youtu.be/M5PouOmPF50
https://youtu.be/QXLRiXjfI8k
https://youtu.be/HxDP9tTOVtQ

