Review Test 2
 Math 2242

Name
Id

Put your name and the question number on each page.
Put a box around the final answer to a question.
(use the back of the page if necessary).
You must Show your work in order to get credits or partial credits.

1. Evaluate the limit of the sequence and explain how you obtained your answer.
(i) $\lim _{n \rightarrow \infty} \frac{n+(-1)^{n}}{\ln n}$
(ii) $\lim _{n \rightarrow \infty}\left(1-\frac{1}{3 n}\right)^{2 n}$
(iii) $\lim _{n \rightarrow \infty} \frac{2^{n-1}+5 n}{3^{n+2}}$
(iv) $\lim _{n \rightarrow \infty} e^{-\sqrt{n}} \ln n$
v) $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$.
2. Determine whether or not the series converges, and if so, find its sum.
(i) $\sum_{n=1}^{\infty} \sin \left(\frac{\pi}{2}-\frac{1}{n}\right)$
(ii) $\sum_{n=0}^{\infty}(-0.33)^{n}$
(iii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$
(iv) $\sum_{n=2}^{\infty} n^{-2} \ln n$
(v) $\sum_{n=1}^{\infty}\left[1+(-1)^{n}\right]$
3. Evaluate the integrals.
a) $\int \frac{1}{x(\ln x)^{3 / 2}} d x$
b) $\int_{0}^{1} \frac{1}{\sqrt{x^{2}+1}} d x$
c) $\int \sqrt{\frac{1-x}{1+x}} d x$ (hint: let $x=\cos 2 u$ and recall $1+\cos 2 u=2 \cos ^{2} u$ and $\left.1-\cos 2 u=2 \sin ^{2} u\right)$
$\left.\mathrm{d}^{*}\right) \int x(\sqrt{x}+1)^{\frac{1}{3}} d x$
4. Evaluate the definite integrals:
a) $\int_{0}^{2} \tan ^{-1}(1-x) d x$
b) $\int_{-\pi}^{\pi} \frac{\sin x}{\sqrt{3-\sin ^{2} x}} d x$
d) $\int_{-\pi / 8}^{\pi / 8} \sec (2 x) \tan ^{3}(2 x) d x$
e) $\int_{-\pi}^{\pi} \sin ^{2} x \cos ^{2} x d x$
5. Find the following limits:

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x} \\
& \text { (b) } \lim _{x \rightarrow+\infty} x^{2} e^{-(x+2)}
\end{aligned}
$$

Fill in the blanks or parenthesis in Problems 6 to 9.
6. Integral Test: $a_{n}>0$. (a) Let $f:[1, \infty) \rightarrow \mathbf{R}$ be so that

- $a_{n}=f(n)$ for each $n \in \mathbf{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function.

Then $\sum a_{n}$ converges if and only if \qquad converges.
(b) [Bonus] According to the integral test, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is comparable to the p-integral $\int_{1}^{\infty} \frac{d x}{x^{p}}$. Thus

- If $p>$ \qquad then $\sum \frac{1}{n^{p}}$ converges.
- If $\rho<$ \qquad then $\sum \frac{1}{n^{p}}$ diverges.
- If $p=$ \qquad then $\sum \frac{1}{n^{p}}$ \qquad

7. (a) Comparison Test: $a_{n}>0$

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbf{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$
\qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbf{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$
\qquad .

8. Root Test: $a_{n}>0$. Let $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$

- If $\rho<$ \qquad then $\sum a_{n}$ converges.
- If $\rho>$ \qquad then $\sum a_{n}$ diverges.
- If $\rho=$ \qquad then the test is inconclusive.

9. $n^{\text {th }}$-term test: Let $\left\{a_{n}\right\}$ be an arbitrary sequence.
(a) If $\sum_{n} a_{n}$ converges, then $\lim a_{n}=$ \qquad
(b) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .
10. Use partial fractions to decompose the rational function $P(x) / Q(x)$ as is the integrand, then evaluate the integral.
a)

$$
\int \frac{x^{2}+4 x+4}{x^{3}+2 x} d x
$$

b)

$$
\int \frac{7 s+4}{(s-2)(s+4)} d s
$$

c)

$$
\int_{0}^{1} \frac{u^{3}}{(u+1)^{2}} d u
$$

d)

$$
\int \frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}} d x
$$

Hint: $\frac{P(x)}{Q(x)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}$
e)

$$
\int \frac{x}{x^{4}+4 x^{2}+8} d x
$$

Hint: complete square of the denominator $Q(x)$ first.
11. L'Hopital's Rule. Determine whether the limit exists, if so, find the limit.
a) $\lim _{t \rightarrow 0} \frac{t-\sin t}{\tan t}$
b) $\lim _{y \rightarrow 2} \frac{y^{2}+6}{y-2}$
c) $\lim _{z \rightarrow 1} \frac{z^{2}+4 z-5}{z^{3}-1}$
d) $\lim _{t \rightarrow \infty} \frac{\ln \left(t^{2}+5 t\right)}{\ln t}$
e) $\lim _{r \rightarrow 0}(1+3 r)^{\frac{1}{r}}$
12. Find the value of the sum of the geometric series.

$$
\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{2}{5}\right)^{n}
$$

Hint: If $|r|<1$ and c is a constant, then

$$
\sum_{n=1}^{\infty} c r^{n}=\frac{c r}{1-r}
$$

13. Consider the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$, where $a_{n}=\frac{5^{n}}{n!}$. Use ratio test to answer the question

$$
\text { answer: } \frac{a_{n+1}}{a_{n}}=
$$

\square absolutely convergent $\sum_{n=1}^{\infty}(-1)^{n} \frac{5^{n}}{n!} \quad \square$ conditionally convergent
\square divergent
(Hint: A series $\sum b_{n}$ is called absolutely convergent if $\sum\left|b_{n}\right|$ converges. It is called conditionally convergent if $\sum b_{n}$ converges but $\sum\left|b_{n}\right|$ diverges)
14. Does the following series converge or diverge? Explain your answer by stating which kind of test you are using and how it works.
(i) (10 points) $\quad \sum_{n=4}^{\infty} \frac{1}{\left(n^{2}-6 n+9\right)^{0.6}}$
(ii) (10 points) $\quad \sum_{n=2}^{\infty} n e^{-n^{2}}$
15^{*}. Find the Taylor polynomial $p_{4}(x)$ of degree 4 for the functions
(i) $f(x)=\ln \left(1+x^{2}\right),-1 \leq x \leq 1$
(ii) $g(x)=\sqrt{3+x},-3 \leq x \leq 3$
(iii) Use the solutions to (i) and (ii) to approximate $\ln 2$ and $\sqrt{3.1}$ respectively.
16. Determine whether the improper integral converges. If it does, find the value of the integral.

$$
\begin{gathered}
\text { a) [10] } \quad \int_{0}^{2} \ln x d x \\
\text { b) [10] } \quad \int_{1}^{\infty} \frac{1}{x^{0.99}} d x \\
\text { (a)[5] } \quad \int_{0}^{1} \ln (1-x) d x \\
\text { (b) }[5] \quad \int_{0}^{\pi / 2} \frac{\cos x}{\sqrt{\sin x}} d x
\end{gathered}
$$

17. Does the following series converge or diverge? Explain your answer by stating which kind of test you are using and how it works.

$$
\begin{gathered}
\text { a) }[10] \quad \sum_{n=1}^{\infty} \frac{n}{2^{n}} \\
\text { b) [10] } \quad \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n^{0.6}}
\end{gathered}
$$

18. Let b_{n} be a decreasing sequence of positive numbers with $\lim _{n \rightarrow \infty} b_{n}=0$. The alternating series test says that the series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ converges to a finite number s. Futhermore if we define the j th truncation error as $E_{j}:=$ $s-S_{j}$, then

$$
\left|E_{j}\right|<b_{j+1}
$$

(As usual S_{j} is the j th partial sum of the series, $S_{j}=\sum_{n=1}^{j}(-1)^{n-1} b_{n}$).
Base on the above fact, explain clearly why

$$
\left|\sin (1)-\left(1-\frac{1}{3!}+\frac{1}{5!}\right)\right|<1 / 5000
$$

(Hint: $E_{3}:=\sin (1)-p_{3}(1)$; the power series expansion is $\sin x=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} /(2 n+1)$! $\sin (1) \approx 0.841471)$
19. Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.
a) [10] Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
b) [5] Compute $\frac{d}{d x} f(x)$ (hint: term by term differentiation)
c)[5] Using b) and the formula $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}(-1<x<1)$ to find a compact expression for $f(x),-1<x<1$.
20^{*} (bonus) It is known that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},-1<x<1$.
a) $[8]$ Show that $\ln \frac{1}{1-x}=\sum_{n=1}^{\infty} \frac{x^{n}}{n},-1<x<1$.
b) $[6]$ Using a), show that $\ln 2=\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$.
c) [6] Using the fact that

$$
\sum_{n=N}^{\infty} \frac{1}{n 2^{n}} \leq \sum_{n=N}^{\infty} \frac{1}{N 2^{n}}
$$

estimate $\ln 2$ with an error less than 0.01.

