Review Final Exam
 Math 2242

Read each question carefully. Avoid making simple mistakes! Put a box around the final answer to a question (Use the back of the page if necessary). For full credit you must show your work. You must have enough written work, including explanations when called for, to justify your answers.

1. Let $f(x)=x^{3}-6 x^{2}+9 x$.
a) Find the largest open interval I containing 0 on which f has an inverse. b) Compute $\left(f^{-1}\right)^{\prime}(0)$. (Hint: $f(0)=0$)
2. Determine if the following limit exist or not. Find the limit if it exists.
a) $\lim _{x \rightarrow 0+} \frac{\tan ^{-1}(2 x)}{2 x} \quad$ (Hint: $\left.\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{x^{2}+1}\right)$
b) $\lim _{x \rightarrow+\infty}\left(x^{2}+500\right) e^{-x^{2}}$
c) $\lim _{n \rightarrow \infty} \frac{\cos (\sqrt{n})}{\sqrt{n}}$
d) $\lim _{n \rightarrow \infty} \sin \left(\frac{\pi n}{2}\right)$
e) $\lim _{n \rightarrow \infty} \sqrt[n]{4 n+7}$
3. Evaluate the integrals.
a) $\int \frac{1}{x(\ln x)^{3 / 2}} d x$
b) $\int_{0}^{1} \frac{1}{\sqrt{x^{2}+1}} d x$ (Hint: Substitution $x=\tan t$. Note $1+\tan ^{2} t=\sec ^{2} t$)
c) $\int x \ln x d x$

4. Fill in the blanks.

a. $\int e^{-3 u} d u=$ \qquad
b. $\int \cos (u+\pi) d u=\square+C$
c. $\int \sin ^{2} u d u=$
(Hint: $\left.\sin ^{2} u=\frac{1}{2}(1-\cos 2 u)\right)$
d. If $a>0$ is a constant then
$\int \frac{u}{a^{2}+u^{2}} d u=$ \qquad $+C$
e. If a is a constant and $a \neq 0$ then

$$
\begin{aligned}
& \int \frac{1}{a^{2}-u^{2}} d u= \\
& \text { (Hint: } \left.\frac{1}{a^{2}-u^{2}}=\frac{1}{2 a}\left(\frac{1}{a-u}+\frac{1}{a+u}\right)\right)
\end{aligned}
$$

f. $\quad \cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=$ \qquad (Hint: Range of inverse cosine is $[0, \pi])$
g. $\tan (3 \pi / 4)=$ \qquad
h. $3^{\log _{3} 9}=$ \qquad
i. $\quad \log _{10} 0.1=$ \qquad
j. According to the integral test, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is comparable to the p-integral $\int_{1}^{\infty} \frac{d x}{x^{p}}$. Thus

- If $p>1$, then $\sum \frac{1}{n^{p}}$ \qquad .
- If $p \leq 1$, then $\sum \frac{1}{n^{p}}$ \qquad .
k. Squeezing Theorem for Sequence Let $a_{n} \leq c_{n} \leq b_{n}$. If $\lim _{n} a_{n}=$ $\lim _{n} b_{n}=L, L$ a finite number, then $\lim _{n} c_{n}$ \qquad

1. Root Test: Let $a_{n}>0$. Let $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$

- If $\rho<1$, then $\sum a_{n}$
- If $\rho>1$, then $\sum a_{n}$
- If $\rho=1$, then the test is \qquad .
- Given an example that illustrates root test \qquad .
m. $n^{\text {th }}$-term test: Let $\left\{a_{n}\right\}$ be an arbitrary sequence.

If $\sum_{n} a_{n}$ converges, then $\lim a_{n}=0$. Give an example to explain the n-th term test: \qquad
5. Determine whether the improper integral converges. If it does, find the value of the integral.

$$
\begin{aligned}
& \text { a) } \int_{0}^{2} \ln x d x \\
& \text { b) } \quad \int_{1}^{\infty} \frac{1}{(x-1)^{0.99}} d x
\end{aligned}
$$

6. Does the following series converge or diverge? Explain your answer by stating which kind of test you are using and how it works.

$$
\begin{aligned}
& \text { a) } \sum_{n=1}^{\infty} \frac{n}{2^{n}} \\
& \text { b) } \quad \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n^{0.6}}
\end{aligned}
$$

7. Find the Taylor polynomial $p_{3}(x)$ of degree 3 for the functions
a) $g(x)=\tan ^{-1} x,-\infty<x<\infty$, then use it to give an approximation value for $\pi / 4$
b) $h(x)=\sqrt{1+x^{4}}$, then use it to approximate $\sqrt{2}$.

How about $p_{8}(x), p_{17}(x), p_{21}(x)$?
8. Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.
a) Determine the radius of convergence of this power series.
b) Compute $\frac{d}{d x} f(x)$ (hint: term by term differentiation)
c) Using b) and the formula $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}(-1<x<1)$ to find a compact expression for $f(x),-1<x<1$.
d) What is the value of $f(-1)$?
9. Find the Taylor polynomial $p_{3}(x)$ of degree 3 for the function $\sin x$, then use it to give an approximation value of $\sin (1)$. What is the absolute value of the error E_{3} in your approximation? $\left(E_{3}:=\sin (1)-\right.$ $p_{3}(1)$; the power series expansion is $\sin x=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} /(2 n+1)$! $\sin (1) \approx 0.841471)$
10. Let $a>0$ be a constant. The parametric equation of an astroid is given by $x=a \cos ^{3} t$ and $y=a \sin ^{3} t$ for $0 \leq t \leq 2 \pi$.
(1) What is the Cartesian equation for the curve?
(2) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $\left(\frac{a}{8}, \frac{3 \sqrt{3} a}{8}\right)$.
(3) Give an integral expression of
a) The total arc length of the astroid
b) The area enclosed by the astroid curve.
$c^{* *}$) (optional) The area S of the surface generated by revolving the astroid around the x axis. Do not attempt to evaluate the integral (hint: S should be twice the surface area of the part for which $0 \leq t \leq$ $\pi / 2$)

Solutions

1. a) $f^{\prime}(x)=3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)=2(x-1)(x-3)$. The zeros 1 and 3 divide the real axis into three parts: $(-\infty, 1),(1,3)$ and $(3, \infty)$. The first interval contains 0 where $f^{\prime}>0$ on $(-\infty, 1)$, which means f monotonically increases and hence f has an inverse on $(-\infty, 1)$.
b) By the inverse function derivative formula, we have

$$
\left(f^{-1}\right)^{\prime}(f(a))=\frac{1}{f^{\prime}(a)} .
$$

Here $f(a)=0$ and we need to find the value of a. Solve $x^{3}-6 x^{2}+9 x=$ 0 , or $x\left(x^{2}-6 x+9\right)=x(x-3)^{2}$ to get $x=0$ or $x=3$.

So $a=0$ since only 0 belongs to the interval $(-\infty, 1)$ and 3 does not. Therefore we get

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}(0)}=\frac{1}{9} .
$$

2 (b) Let $u=x^{2}$, then

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow+\infty} \frac{x^{2}+500}{e^{x^{2}}}=\lim _{u \rightarrow+\infty} \frac{u+500}{e^{u}} \\
& \text { L'hopital } \lim _{u \rightarrow \infty} \frac{1}{e^{u}}=\frac{1}{\infty}=0 .
\end{aligned}
$$

(c) Since $-1 \leq \cos \sqrt{n} \leq 1$, it follows that

$$
\frac{-1}{\sqrt{n}} \leq \frac{\cos (\sqrt{n})}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}
$$

Since $\lim _{n} \frac{1}{\sqrt{n}}=\lim _{n}-\frac{1}{\sqrt{n}}=0$, we have by Squeezing theorem

$$
\lim _{n} \frac{\cos (\sqrt{n})}{\sqrt{n}}=0 .
$$

e)

$$
\sqrt[n]{4 n+7}=e^{\frac{1}{n} \ln (4 n+7)}
$$

By L'hopital rule, $\lim _{n} \frac{1}{n} \ln (4 n+7)=0$. So

$$
\lim _{n} \sqrt[n]{4 n+7}=\lim _{n} e^{\frac{1}{n} \ln (4 n+7)}=e^{0}=1
$$

7. a) From the able in the hand-out notes or from the Text 10.8 or 10.9, we know

$$
\tan ^{-1} x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}, \quad x \in[-1,1]
$$

So the Taylor polynomial of degree 3 is

$$
p_{3}(x)=x-\frac{x^{3}}{3}
$$

which approximates $\tan ^{-1}(x)$. Substituting $x=1$ we obtain

$$
\tan ^{-1}(1) \approx x-\frac{x^{3}}{3}=p_{3}(1)=1-1 / 3=0.667
$$

That is $\frac{\pi}{4} \approx 0.667$. (If you use more terms in the Talyor series p_{8} or $p_{1} 0$, say, you will get better approximation value).

To find $p_{8}(x)$ (Taylor polynomial of degree 8), we use the first four terms to get

$$
p_{8}(x)=\sum_{k=0}^{3} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}
$$

We see that $\tan ^{-1}(1) \approx p_{8}(1)=0.7238$ is a better approximation for $\pi / 4$.

Similarly $p_{17}(1) \approx 0.81309$ and $p_{21}(1) \approx 0.76284$.
Second method. By the Taylor formula, if f has derivatives of all orders on an interval $\left(x_{0}-\delta, x_{0}+\delta\right)$, then

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!} x^{k}
$$

is the Taylor series for f. Now $f(x)=\tan ^{-1} x$, so we can compute the derivatives $f^{(k)}$ at $x_{0}=0$ for $k=0,1,2,3$ and we will get the same Taylor polynomial $p_{3}(x)$ as found above.
8. a) Let $a_{n}=x^{n} / n$. From

$$
\frac{a_{n+1}}{a_{n}}=\frac{\frac{x^{n+1}}{n+1}}{\frac{x^{n}}{n}}=\frac{n}{n+1} x
$$

we have $\left|a_{n+1} / a_{n}\right| \rightarrow|x|$. By Ratio Test, the series converges if $|x|<1$.
So the radius of convergence is $R=1$. Since $\sum_{n}(-1)^{n} \frac{1}{n}$ converges and $\sum_{n} \frac{1}{n}$ diverges, the interval of convergence is $[-1,1)$.
b) and c) Term by term differentiation gives

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) \\
= & \sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{n}}{n}\right)=\sum_{n=1}^{\infty} x^{n-1}=\frac{1}{1-x}
\end{aligned}
$$

for $-1<x<1$. Now integrating both sides of $f^{\prime}(x)=\frac{1}{1-x}$ we obtain

$$
f(x)-f(0)=\int_{0}^{x} f^{\prime}(t) d t=\int_{0}^{x} \frac{1}{1-t} d t=-\ln (1-x)
$$

Notice that $f(0)=\sum_{1}^{\infty}(0)^{n} / n=0$. Thus we have

$$
f(x)=-\ln (1-x), \quad-1<x<1 .
$$

10. (1) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(2) $t=\pi / 3$ corresponds to the point $\left(\frac{a}{8}, \frac{3 \sqrt{3} a}{8}\right)$.

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{\left(\frac{a}{8}, \frac{3 \sqrt{3} a}{8}\right)}=\left.\frac{d y / d t}{d x / d t}\right|_{t=\pi / 3}=\left.\frac{3 a \sin ^{2} t \cos t}{3 a \cos ^{2} t(-\sin t)}\right|_{t=\pi / 3} \\
=- & -\left.\frac{\sin t}{\cos t}\right|_{t=\pi / 3}=-\left.\tan t\right|_{t=\pi / 3}=-\sqrt{3} .
\end{aligned}
$$

Let $y^{\prime}=y^{\prime}(x)$.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime}}{d x} \\
= & \frac{d y^{\prime} / d t}{d x / d t}=\frac{1}{3 a \cos ^{4} t \sin t}
\end{aligned}
$$

Hence

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{\left(\frac{a}{8}, \frac{3 \sqrt{3} a}{8}\right)}=\left.\frac{1}{3 a \cos ^{4} t \sin t}\right|_{t=\pi / 3}=\frac{16 \sqrt{2}}{3 a} .
$$

(3) a) Total arc length is equal to

$$
\begin{aligned}
& L=4 \int_{0}^{\pi / 2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
= & 4 \int_{0}^{\pi / 2} \sqrt{\left(3 a \cos ^{2} t(-\sin t)\right)^{2}+\left(3 a \sin ^{2} t \cos t\right)^{2}} d t \\
= & 4 \int_{0}^{\pi / 2} 3 a \cos t \sin t d t=12 a \int_{0}^{\pi / 2} \cos t \sin t d t .
\end{aligned}
$$

b) The area enclosed by the astroid curve is equal to

$$
\begin{aligned}
& A=4 \int_{x=0}^{x=a}|y| d x=4 \int_{0}^{\pi / 2}|y(t)|\left|x^{\prime}(t)\right| d t \\
= & 4 \int_{0}^{\pi / 2}\left|a \sin ^{3} t\right| 3 a \cos ^{2} t(-\sin t) d t=12 a \int_{0}^{\pi / 2} \sin ^{4} t \cos ^{2} t d t
\end{aligned}
$$

$\left.c^{* *}\right)$ The surface area, according to the formula in Section 11.2 for a parametric curve, is equal to

$$
\begin{aligned}
& A=2 \int_{x=0}^{x=a} 2 \pi|y| \sqrt{1+y^{\prime}(x)^{2}} d x=4 \pi \int_{0}^{\pi / 2}\left|a \sin ^{3} t\right| \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
= & 4 a \pi \int_{0}^{\pi / 2} \sin ^{3} t(3 a \sin t \cos t) d t=12 a^{2} \int_{0}^{\pi / 2} \sin ^{4} t \cos t d t .
\end{aligned}
$$

