Instructor: Dr. Shijun Zheng

Review Test 2
 Math 2243

Name

Read each question carefully. Avoid simple mistakes. Put a box around the final answer to a question. (Use the back of the page if necessary).
You must show your work to support your answer.

1. Find the differential of $u=\sqrt{x^{2}+y^{2}+z^{2}}$.
2. Use the Chain rule (plot a tree diagram) to find the indicated partial derivatives $u=x^{2}+\sqrt{y^{2}+z^{2}}, x=\sin (r) \cos (s), y=\sin (r) \sin (s), z=3$. Find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$. Your final answer should be given in terms of r and s only.
3. Find the absolute maximum and absolute minimum values of $f(x, y)=$ $x y-x+y$ on the closed set D which is bounded by the parabola $y=x^{2}$ and the line $y=4$.
4. Find the directional derivative of the function at the given point in the direction of \mathbf{v} :

$$
f(x, y)=x-2 x \sqrt{y}, \quad(2,9), \quad \mathbf{v}=\langle 1,-1\rangle
$$

5. - Let $f(x, y)=5 x y^{2} /\left(x^{2}+y^{2}\right)$.
a) Find an equation for the tangent plane to the graph $z=f(x, y)$ at the point $(1,2,4)$.
b) In which direction is f increasing most rapidly at the point $(1,2) ?$

- Find the tangent plane to the surface $z=y \ln x$ at $(1,4,0)$.

6. a) Evaluate the following limit

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{2}+1}} \mathbf{i}+\frac{\sin x}{x} \mathbf{j}-\tan ^{-1}(x) \mathbf{k}\right)
$$

b) Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=\mathbf{i}+\sin t \mathbf{j}-\sqrt{t} \mathbf{k}$ and $\mathbf{r}(1)=\mathbf{i}-\mathbf{j}$.
7. Let $h(x, y)=\sqrt{9-x^{2}-y^{2}}$
(a) Find and sketch the domain of the function h

(b) Find the range of $h(x, y)$
8. Find and sketch the domain of the function

$$
f(x, y)=\frac{\sqrt{y-x^{2}}}{1-x^{2}}
$$

9. Use the definition of continuity to explain whether or not the function $f(x, y)$ is continuous at $(0,0)$

$$
f(x, y)= \begin{cases}\frac{3 x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

10. Use the limit definition to find the partial derivative $\frac{\partial f(x, y)}{\partial y}$ where $f(x, y)=x y^{2}$.

- Find the indicated partial derivatives: $f_{x y y}$, where

$$
f(x, y)=y e^{\frac{x}{y}}
$$

11. * Apply the method of Lagrange multipliers to minimize $f(x, y)=x^{2}+4 y^{2}$ subject to the constraint $3 x+2 y=60$.
12. Sketch the region of integration, and evaluate the integral:

- [Ex 15.1\# 18]

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-s^{2}}} 8 t d t d s
$$

- [Ex. 15.1 \# 5]

$$
\int_{0}^{\pi} \int_{0}^{x} x \sin (y) d y d x
$$

- $\iint_{R} x \sin (x y) d A$ where $R=\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq \frac{\pi}{4}\right\}$

13. Evaluate the integral $\iint_{D} y^{2} d A$, where D is the region bounded by the upper half of the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=4, y=x$, and $y=-x$.
14. (optional*) Given a rectangular coordinates $(-1,-2,3)$, convert into cylindrical coordinates and spherical coordinates respectively.
15. Sketch the region of integration, reverse the order of integration and evaluate the integral:

- [Ex 15.1\# 31]

$$
\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x
$$

- [Ex. 15.1 \#32]

$$
\int_{0}^{2} \int_{x}^{2} 2 y^{2} \sin (x y) d y d x
$$

16. [Ex 15.2 \#5] Sketch the region bounded by the given lines and curves. Then find the area using double integral:
The curve $y=e^{x}$ and the lines $y=0, x=0$, and $x=\ln 2$.

Solutions

1. If $u=u(x, y, z)$, by definition the differential of u is given by $d u=$ $\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z$. Since

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}(2 x)=\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}} \\
& \frac{\partial u}{\partial y}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}(2 y)=\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}} \\
& \frac{\partial u}{\partial z}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}(2 z)=\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}},
\end{aligned}
$$

it follows that

$$
d u=\frac{x d x+y d y+z d z}{\sqrt{x^{2}+y^{2}+z^{2}}} .
$$

2. See the diagrams on the section of Chain rules in Chap.14.

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial r} \\
& \frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s}
\end{aligned}
$$

Compute the following partial derivatives and substitute into the above to yield the answer.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=2 x, \frac{\partial u}{\partial y}=\frac{y}{\sqrt{y^{2}+z^{2}}}, \frac{\partial u}{\partial z}=\frac{z}{\sqrt{y^{2}+z^{2}}} \\
& \frac{\partial x}{\partial r}=\cos (r) \cos (s), \frac{\partial x}{\partial s}=-\sin (r) \sin (s) \\
& \frac{\partial y}{\partial r}=\cos (r) \sin (s), \frac{\partial y}{\partial s}=\sin (r) \cos (s) \\
& \frac{\partial z}{\partial r}=\frac{\partial z}{\partial s}=0
\end{aligned}
$$

3. Step 1. Find the critical point(s). Solve $\left\{\begin{array}{l}f_{x}=y-1=0 \\ f_{y}=x+1=0\end{array}\right.$ to get the solution $(x, y)=(-1,1)$, where the value of f is $f(-1,1)=1$.

Step 2. Find the maximum and minimum of f on the boundary of the set D. Solving the system $\left\{\begin{array}{l}y=x^{2} \\ y=4\end{array}\right.$ shows the intersection points are $(-2,4)$ and $(2,4)$.

Thus the boundary of D has two pieces: one is the line segment $y=4,-2 \leq$ $x \leq 2$, the other is part of a parabola $y=x^{2},-2 \leq x \leq 2$.

On the line segment the value of f is given by $f(x, 4)=4 x-x+4=3 x-4$, $x \in[-2,2]$. For the function $3 x-4, x \in[-2,2]$, apparently the maximum is $y_{\max }=3(2)-4=2, y_{\text {min }}=3(-2)-4=-10$.

On the parabola curve, the value of f (restricted on the parabola) is given by $f\left(x, x^{2}\right)=x\left(x^{2}\right)-x+x^{2}=x^{3}+x^{2}-x, x \in[-2,2]$. For this function $y=x^{3}+x^{2}-x, y^{\prime}=3 x^{2}+2 x-1=(x+1)(3 x-1)$. So the critical points are $x=-1, x=1 / 3$. Compare $f(-1)=1, f(1 / 3)=-5 / 27, f(-2)=-2, f(2)=10$.

Step 3. From Step 2, consider all the possible points above at those critical points or end points, we know that $f_{\max }=10$ and $f_{\min }=-2$.
5. (a) The equation of the tangent plane at a given point on $z=f(x, y)$ has the Normal vector

$$
N=\left\langle f_{x}, f_{y},-1\right\rangle_{(1,2)}
$$

Then the equation is given by

$$
N \cdot\langle x-1, y-2, z-4\rangle=0
$$

(b) The direction for which f increases most rapidly at the point $(1,2)$ is

$$
u=\frac{\nabla f}{|\nabla f|}
$$

where $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle_{(1,2)}$.
6. (a) $0 \mathbf{i}+0 \mathbf{j}-\frac{\pi}{2} \mathbf{k}$
(b)

$$
\begin{aligned}
& r(t)=\int r^{\prime}(t) d t=\left(\int 1 d t\right) i+\left(\int \sin t d t\right) j-\left(\int \sqrt{t} d t\right) k \\
= & t \mathbf{i}-\cos t \mathbf{j}-\frac{2}{3} t^{3 / 2} \mathbf{k}+\mathbf{C}
\end{aligned}
$$

where \mathbf{C} is an arbitrary constant vector. Using the condition $r(1)=i-j$ by sub $t=1$ into the expression of $r(t)$ above, we can find the value of \mathbf{C}.
7. Domain: $\left\{(x, y) \in R^{2}: y \geq x^{2}, x \neq \pm 1\right\}$
8. We use two-path test to show f does not have a limit at $(0,0)$, thus f is discontinuous at $(0,0)$. Take the path $y=k x, k$ a constant, then along this path

$$
f(x, y)=\frac{3 x y^{2}}{x^{2}+y^{4}}=\frac{3 x k^{2} x^{2}}{x^{2}+k^{4} x^{4}}=\frac{3 k^{2} x}{1+k^{4} x^{2}} \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

But along the other path $y=\sqrt{x}$,

$$
f(x, y)=\frac{3 x y^{2}}{x^{2}+y^{4}}=\frac{3 x \cdot x}{x^{2}+x^{2}}=\frac{3 x^{2}}{2 x^{2}} \rightarrow \frac{3}{2} \quad \text { as } x \rightarrow 0
$$

So there are two different limits along different paths, which means the limit of f does not exist at $(0,0)$.
10. (a) To describe the region R, we know from the outside integration variable s and the inner integration variable t that R is bounded by two vertical lines $s=0$ and $s=1$. Then for each fixed s, the limit of t goes from $t=0$ to $t=\sqrt{1-s^{2}}$. So this region R is bounded by two pieces, one is the semi circle $t^{2}+s^{2}=1$, the other is $t=0$, the s-axis.

Now we get the value of the double integral.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\sqrt{1-s^{2}}} 8 t d t d s=\int_{0}^{1}\left(\left.4 t^{2}\right|_{t=0} ^{t=\sqrt{1-s^{2}}}\right) d s \\
= & \int_{0}^{1}\left(4\left(1-s^{2}\right)\right) d s=4-\left.\frac{s^{3}}{3}\right|_{s=0} ^{s=1}=4-\frac{1}{3}=11 / 3 .
\end{aligned}
$$

(b) This region R is bounded by $x=0, x=\pi$ and $y=0$ and $y=x$. So it is a triangle.

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{x} x \sin (y) d y d x=\int_{0}^{\pi} x\left(\left.(-\cos y)\right|_{y=0} ^{y=x}\right) d x \\
= & \int_{0}^{\pi} x(-\cos x+1) d x=-\int_{0}^{\pi} x \cos x d x+\int_{0}^{\pi} x d x \\
= & -\left.(x \sin x+\cos x)\right|_{0} ^{\pi}+\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=2+\frac{\pi^{2}}{2} .
\end{aligned}
$$

