Review Exam Math 2243

Read each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must *show your work*. Incomplete solutions may receive partial credit if you have written down a reasonable partial solution.

- (1) Let u = (1, -3, 2) and v = (-4i k). Find:
 - (a) the vector projection of u onto v.
 - (b) the angle between u and v.
 - (c) the area of the triangle spanned by u and v.
 - (d) the equation of the plane through P(1, 1, 1) with normal perpendicular to both u and v.
- (2) Let $r(t) = (2 \sin t, 5t, 2 \cos t)$. Find
 - (a) the length of the curve (helix) over $-10 \le t \le 10$.
 - (b) the equation of the tangent line to the curve when $t = \pi/4$
 - (c) the curvature at any given time t (hint: $\kappa(t) = |r'(t) \times r''(t)|/|r'(t)|^3$)
- (3) Find a vector orthogonal to the plane containing the points: P(1, -1, 0), Q(-2, 3, -4), and R(1, 1, 1). Find the equation of the plane. Find the area of the triangle PQR.
- (4) Let $h(x,y) = \sqrt{9 x^2 y^2}$
 - (a) Find and sketch the domain of the function h

- (b) Find the range of h(x, y)
- (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

$$f(x,y) = \begin{cases} \frac{3x^2y}{x^2+2y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (6) (a) Find all critical points, extrema and saddle points of $g(x, y) = x^4 + y^4 4xy + 1$.
 - (b) Find the absolute maximum and absolute minimum of values of $f(x, y) = x^2 + y^2 + x^2y + 4$ on the region $D = \{(x, y) \mid |x| \le 1, |y| \le 1\}$

- (7) (a) Use the limit definition to find the partial derivative $\frac{\partial f(x,y)}{\partial y}$ where $f(x,y) = x^2 y.$

 - (b) Find the indicated partial derivatives: f_{xy}, f_{yx} , where $f(x, y) = ye^{\frac{x}{y}}$ (c) Find the directional derivative of $f(x, y, z) = x^2 x^2y^3 + 10z + 30$ at (1, 1, 1) in the direction $\mathbf{v} = (2, 0, 1)$.
- (8) Let $w = \cos(x + 3y)$, $x = r^2 + s^2$ and y = rs
 - (a) Use the Chain rule to express w_r and w_s as functions of r and s.
 - (b) Evaluate w_r and w_s at $(r, s) = (0, \pi)$.
- (9) Let $g(x, y) = \ln(x^2 + y^2)$.
 - (a) Find the partial derivatives g_x and g_y .
 - (b) Find the equation of the tangential plane to the surface z = q(x, y) at (0, 1, 0).
 - (c) Find the linearization L(x, y) of the function g(x, y) at the point (0, 1).
 - (d) Give an estimate for the value q(-0.1, 0.9).
 - (e) Calculate $\Delta g := (\partial_x^2 + \partial_y^2)g$.
- (10) (a) Find the differential of $u = \sqrt{x^2 + y^2 + z^2}$.
 - (b) Find the tangent plane to the surface $z = y \ln x$ at (1, 4, 0).
 - (c) Use the Chain rule (plot a tree diagram) to find the indicated partial derivatives $u = x^2 + \sqrt{y^2 + z^2}$, $x = \sin(r)\cos(s)$, $y = \sin(r)\sin(s)$, z = 3. Find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$. Your final answer should be given in terms of r and s only.
- (11) (a) *(optional) Find the area of the surface for the part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4.$
 - (b) Find the volume of the tetrahedron enclosed by the planes: x+2y+z =2, x = 0, z = 0, and y = 2x.
- (12) Quick answer:
 - (a) The curvature of $x^2 + y^2 = 49$ is
 - (b) How is the gradient at a point related to the level curve through that point?
 - (c) If z depends upon u and v, and u and v depend upon t, then _
 - (d) The graph of r(t) is a _
 - (e) The graph of z = f(x, y) is a
 - (f) The graph of $r(t) = \langle t+1, 2t-1, 3t \rangle$ is
 - (g) Given a vector valued function r(t), where does the acceleration lie?
- (13) (a) Evaluate the line integral $\int_C xy dx + (x+y) dy$ along:
 - (i) That part of the graph of $y = x^2$ from (-1, 1) to (2, 4)
 - (ii) The line segment from (-1, 1) to (2, 4)
 - (iii) The broken line from (-1, 1) to (2, 1) to (2, 4).
 - (b) Evaluate the line integral: $\int_C xy^3 ds$, C is the left half of the circle $x^2 + y^2 = 4.$
- (14) (a) Determine whether or not $\mathbf{F}(x, y) = (2x \cos y y \cos x)\mathbf{i} + (-x^2 \sin y y \cos x)\mathbf{i}$ $\sin x$)**j** is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.

- (b) Show that $\mathbf{F}(x, y) = (e^x(\sin(x+3y) + \cos(x+3y)), 3e^x \cos(x+3y))$ is conservative and find a potential function. (hint: verify that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$)
- (c) Show that $\mathbf{F}(x, y) = (M, N, P) = (2xyz + 3y^2, x^2z + 6xy 2z^3, x^2y 6yz^2)$ is conservative and find a potential function. (hint: show that $\overrightarrow{\operatorname{curl}} \mathbf{F} = (P_y N_z, M_z P_x, N_x M_y) = \mathbf{0}$
- (15) Use the Fundamental Theorem for line integrals to evaluate $\int_c \mathbf{F} \cdot d\mathbf{r}$ along a very complicated curve C from (1, -1, 0) to (2, 2, -3), and $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + (xy + 2z)\mathbf{k}$.
- (16) Let T be the unit tangent and N the (outward) unit normal for a curve C: $t \mapsto \mathbf{r}(t)$ on [a,b]. Let R be a simply connected bounded open domain in \mathbf{R}^2 , where F = Mi + Nj is continuously differentiable.
 - (a) Scalar line integral on \mathbf{R}^2 is:

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t), y(t))|r'(t)|dt = \underline{\qquad}$$
(b) Vector line integral
$$W = \int_{C} F \cdot Tds = \int_{a}^{b} F(r(t)) \cdot r'(t)dt = \underline{\qquad}$$
(c) (optional)* Green's Theorem (circulation): $\oint_{\partial R} F \cdot Tds = \oint_{\partial R} Mdx + Ndy = \iint_{R} (\nabla \times F)dxdy = \underline{\qquad}$
(d) (optional)* Green's Theorem (flux): $\oint_{\partial R} F \cdot Nds = \oint_{\partial R} Mdy - Ndx =$

$$\iint_{R} (\nabla \cdot F) dx dy =$$

- (e) (optional)* Use Green's Theorem to evaluate the line integral along the given positively oriented curve: $\int_C (y^2 + e^{\sqrt{x}}) dx + (2x + \cos(y^2)) dy$ where C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.
- (f) (optional)* Use Green's Theorem to evaluate $\int_c \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x,y) = \langle 200\% \overline{x} + y^2, x^2 + \frac{1}{1+y^{2008}} \rangle$, *C* consists of the arc of the curve $y = \sin x$ from (0,0) to $(\pi,0)$ and the line segment from $(\pi,0)$ to (0,0).
- (17) (optional*) Let $\mathbf{F}(x, y, z) = e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j} + z \mathbf{k}$.
 - (a) find curl ${\bf F}$ and div ${\bf F}$
 - (b) find div curl \mathbf{F} , i.e. the divergence of the vector field curl \mathbf{F}
 - (c) What is the physical meaning of curl **F**?
- (18) (optional)* Find the area of the surface for the part of the sphere $x^2 + y^2 + z^2 = 9$ that lies within the cylinder $(x 2)^2 + y^2 = 1$ and above the *xy*-plane.
- (19) (optional*)
 - (a) Evaluate the integral $\iint_R x^2 dA$ where R is the region bounded by y = -2x and $y = 2x x^2$.
 - (b) Find the area of one loop of the polar curve $r = \sin 3\theta$

(Hint: You can think of the area formula by Green's Theorem Area = $\frac{1}{2} \oint_C x dy - y dx = \frac{1}{2} \oint_C x dx + y dy$, C a closed curve with counterclockwise orientation).

- (20) Evaluate the triple integrals:
 - (a) $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} z^3 dz dy dx.$ (b) $\int_{-1}^{1} \int_{0}^{z} \int_{x^2-y^2}^{y} dz dy dz$
- (b) $\int_0^1 \int_0^z \int_0^y z e^{-y^2} dx dy dz$. (21) Set up a triple integral but *do not evaluate it*.
 - (a) $\iiint_R (x^3 + xy) dV$ in cylindrical coordinates where R is the solid in the first octant that lies beneath the paraboloid $z = 1 x^2 y^2$.
 - (b) (optional^{*}) using spherical coordinates for the mass of the ice-cream cone inside the cone $z = \sqrt{x^2 + y^2}$ and topped off by $x^2 + y^2 + z^2 = 1$, with density $\delta(x, y, z) = 4z$.

Solutions:

1. (a)
$$\frac{\langle 24,0,6\rangle}{\sqrt{17\cdot 17}}$$

(b) $\theta = \cos^{-1}(-\frac{6}{\sqrt{14\cdot 17}}) = 1.97025 \, rad = 113^{\circ}$
(c) $Area = \frac{1}{2}|u \times v| = \frac{\sqrt{202}}{2}$
(d) $3x - 7y - 12z = -16$
2. (a) $20\sqrt{29}$

- (b) $r'(t) = (2\cos t, 5, -2\sin t), T(t) = (2\cos t, 5, -2\sin t)/\sqrt{29}, \therefore \ell(t) = (\sqrt{2}, 5\pi/4, \sqrt{2}) + t(\sqrt{2}, 5, -\sqrt{2})$
- (c) 2/29. Indeed,

$$\kappa = \left|\frac{dT}{ds}\right| = \frac{1}{|v|} \left|\frac{dT}{dt}\right|$$
$$= \frac{1}{\sqrt{29}} \left|(-2\sin t, 0, -2\cos t)\right| / \sqrt{29} = 2/29$$

where $v = |r'(t)| = \sqrt{4\cos^2 t + 5^2 + 4\sin^2 t} = \sqrt{29}.$

3. Using cross product we find $N = PQ \times PR$ is orthogonal to the plane. The equation of the plane is given by the standard form:

$$N \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

where (x_0, y_0, z_0) can be taken to be any of the three point P, Q, or R. Now, $PQ = Q - P = (-2, 3, -4) - (1, -1, 0) = \langle -3, 4, -4 \rangle$, $PR = R - P = (1, 1, 1) - (1, -1, 0) = \langle 0, 2, 1 \rangle$

$$N = \begin{vmatrix} i & j & k \\ -3 & 4 & -4 \\ 0 & 2 & 1 \end{vmatrix} = 12i + 3j - 6k$$

Hence the equation of the plane is

$$12(x-1) + 3(y-1) - 6(z-1) = 0$$

or $4x + y - 2z = 3$

Second method. Let the plane equation be A(x-1)+B(y-1)+C(z-1)=0. Substituting the coordinates of P and Q into this equation to obtain a relation between A, B, C which will tell the three components of N. 4. It is easy to check $2|xy| \le x^2 + y^2 \le x^2 + 2y^2$ Hence

$$|\frac{3x^2y}{x^2 + 2y^2}| \le \frac{3}{2}|x| \to 0$$

as $(x, y) \to 0$, which agrees with f(0, 0), and we know that f(x, y) is continuous at (0, 0).

5 (a) Saddle at (0,0), local at (1,1), (-1,-1). Indeed, Solve

$$\begin{cases} g_x = 4x^3 - 4y = 0\\ g_y = 4y^3 - 4x = 0\\ x^3 - y = 0\\ y^3 - x = 0 \end{cases}$$

Sub $y = x^3$ into $x = y^3$ to get $x = x^9 \Rightarrow$

$$x = 0, x = \pm 1.$$

6(a) By definition

$$\frac{\partial f(x,y)}{\partial y} = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$
$$= \lim_{k \to 0} \frac{x^2(y+k) - x^2y}{k} = \lim_{k \to 0} \frac{x^2(k)}{k}$$
$$= \lim_{k \to 0} x^2 = x^2.$$

6 (b)

$$f_{xy} = f_{yx} = -\frac{x}{y^2} e^{x/y}$$

provided $y \neq 0$.

[6 (c)]
$$D_u f = \nabla f|_{(1,1,1)} \cdot \frac{u}{|u|} = (0, -3, 10) \cdot \frac{(2,0,1)}{\sqrt{5}} = 2\sqrt{5}$$

7 (a) By definition

$$du = u_x dx + u_y dy + u_z dz$$

= $\frac{x}{\sqrt{x^2 + y^2 + z^2}} dx + \frac{y}{\sqrt{x^2 + y^2 + z^2}} dy + \frac{z}{\sqrt{x^2 + y^2 + z^2}} dz$

(b) If z = f(x, y), then the graph of this function is a surface. At any point (x_0, y_0, z_0) on the surface, there is a tangent plane whose normal vector is given by $N = \langle f_x, f_y, -1 \rangle$. Then the equation is given by

$$N \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0.$$

(c) The Chain rule reads:

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial r}$$
$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial s}$$

8 (a) Let $z = f(x, y) = y^2 - x^2$ and R the region on the xy-plane $\{(x, y) : 1 \le \sqrt{x^2 + y^2} \le 2\}$. Then the Area of the surface

$$\begin{split} S &= \iint_R \sqrt{1+f_x^2+f_y^2} dx dy \\ &= \int_{\theta=0}^{\theta=2\pi} \int_{r=1}^{r=2} \sqrt{1+4r^2} r dr d\theta \end{split}$$

where $f_x = -2x$, $f_y = 2y$.

(b) The tetrahedron is bounded on the bottom by y = 2x, x = 0 and x + 2y = 2. The volume V can be evaluated over this triangle $\triangle OBC$ by a double integral. Here O = (0,0), B = (2/5, 4/5), C = (0,1). Let z = 2 - x - 2y, which is the equation of the plane on the top.

$$V = \iint_{\Delta} z dx dy = \int_{x=0}^{x=2/5} \int_{y=2x}^{y=1-\frac{x}{2}} (2-x-2y) dy dx.$$

9. (a) 1/7

(b) "perpendicular to the tangent vector at the point, that is $\nabla F \cdot \mathbf{T} = 0$, given that F(x, y) = C is a level curve"

or alternatively, "orthogonal to the level curve".

- (c) z is a function of t
- (d) curve
- (e) surface
- (f) line

(g) **a** lies in the plane spanned by the tangential and principle normal of $\mathbf{r} = \mathbf{r}(t)$

10 (a) (i) $C(t) = (t, t^2), C'(t) = (1, 2t),$

$$\int_{-1}^{2} (t^3 + 2t(t+t^2))dt = \int_{-1}^{2} (2t^2 + 3t^3)dt$$
$$= (\frac{2}{3}t^3 + \frac{3}{4}t^4)|_{-1}^2 = 69/4$$

(ii) C(t) = (-1, 1) + (3, 3)t = (-1 + 3t, 1 + 3t), C'(t) = (3, 3),

$$w = \int_{-1}^{2} 3(-1+3t)(1+3t) + (3t+3t)dt$$
$$= 3\int_{-1}^{2} (9t^2 - 1 + 6t)dt = 99$$

(iii)

$$w = \int_{-1}^{2} x dx + \int_{1}^{4} (2+y) dy$$
$$= \frac{x^{2}}{2} |_{-1}^{2} + (2y + \frac{y^{2}}{2})|_{1}^{4} = 15.$$

b) The parametric equation for the left semi-circle is $r(t) = (2\cos t, 2\sin t)$, $t \in [\frac{\pi}{2}, \frac{3\pi}{2}]$. So $s'(t) = |v(t)| = |dr/dt| = |(-2\sin t, 2\cos t)| = 2$. We have

$$\int_C xy^3 ds = \int_{\pi/2}^{3\pi/2} \cos t (\sin t)^3 |v(t)| dt$$
$$= 2 \int_{\pi/2}^{3\pi/2} \cos t (\sin t)^3 dt = 0.$$

11 a) check that $M_y = N_x \Rightarrow F$ is conservative. To find f, notice that $\frac{\partial f}{\partial x} = M$,

$$f(x,y) = \int M dx = \int (2x\cos y - y\cos x) dx$$
$$= x^2 \cos y - y \sin x + h(y)$$

To find h(y), taking derivative in y we get

$$\partial_y f(x,y) = N(x,y) \Rightarrow$$

= $-x^2 \sin y - \sin x + h'(y) = -x^2 \sin y - \sin x$

 $\therefore h'(y) = 0$ and so h(y) = C

b) $f(x,y) = e^x \sin(x+3y)$

c) It is conservative because:

$$M_y = 2xz + 6y = N_x = 2xz + 6y$$
$$N_z = P_y = x^2 - 6z^2$$
$$P_x = M_z = 2xy.$$

In order to find the potential function f such that $\nabla f = F$, that is, $f_x = M$, $f_y = N$, $f_z = P$, we integrate

$$f = \int M dx = \int (2xyz + 3y^2) dx = x^2(yz) + (3y^2)x + g(y, z).$$

Then, to recover g(y, z), taking derivative in y both sides we get

$$\begin{split} f_y &= N \\ or \ x^2 z + (6y) x + g'_y(y,z) = x^2 z + 6xy - 2z^3 \\ simplify \ g'_y(y,z) &= -2z^3 \\ \Rightarrow g &= \int (-2z^3) dy = -2z^3 y + h(z). \end{split}$$

It remains to recover h(z). To do that we take derivative in z both sides of $f = x^2(yz) + (3y^2)x - 2z^3y + h(z)$ to obtain

$$f_z = P$$

or $x^2y - 6z^2y + h'(z) = x^2y - 6yz^2$
simplify $h'(z) = 0 \Rightarrow h(z) = constant.$

Hence, $f(x, y, z) = x^2 z y + 3x y^2 - 2z^3 y + C$.

12. The function F has a potential function (anti-derivative) $f = xyz + z^2$, because $\nabla f = F$. F.T.C tells that

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(2, 2, -3) - f(1, -1, 0) = -3$$

13. a)
$$\int_{a}^{b} f(r(t))|v(t)|dt$$

b)
$$\int_{a}^{b} F(r(t)) \cdot d\mathbf{r} = \int_{C} M dx + N dy$$

c) Let $F = \langle M, N \rangle$, then $\nabla \times F = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k}$.

$$\therefore \qquad \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy$$

d) $\nabla \cdot F = \langle \partial_{x}, \partial_{y} \rangle \cdot \langle M, N \rangle = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}$

$$\therefore \qquad \iint_{R} \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) dx dy$$

- 14. (a) 64/5 (b) $\pi/12$
- 15^{*}. Find the area of the surface for the part of the sphere $x^2 + y^2 + z^2 = 9$ that lies within the cylinder $(x 2)^2 + y^2 = 1$ and above the *xy*-plane.

[Solution] The surface $z = f(x, y) = \sqrt{9 - x^2 - y^2}$ is defined over R: $(x-2)^2 + y^2 = 1$.

$$f_x = \frac{-x}{\sqrt{9 - x^2 - y^2}}, \quad f_y = \frac{-y}{\sqrt{9 - x^2 - y^2}}$$
$$1 + f_x^2 + f_y^2 = \frac{9}{9 - x^2 - y^2}$$

Use polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ to get

Surface Area =
$$\iint_{R} \sqrt{1 + f_x^2 + f_y^2} dA$$
$$= \int_{-\pi/6}^{\pi/6} \int_{r=h(\theta)}^{r=g(\theta)} \frac{3}{\sqrt{9 - r^2}} r dr d\theta$$

where $g(\theta) = 2\cos\theta - \sqrt{4\cos^2\theta - 3}$, $h(\theta) = 2\cos\theta + \sqrt{4\cos^2\theta - 3}$. Note that $4\cos^2\theta - 3 \ge 0$ if $-\pi/6 \le \theta \le \pi/6$.

19 (a) Area= $\frac{1}{2} \oint_C x dy - y dx$

(b) The curve has three leaves or loops. Because of symmetry, we look at the one in the first quadrant, bounded by $\theta = 0$ and $\theta = \pi/3$. Hence

Area of one loop =
$$\iint dA = \int_0^{\pi/3} \int_0^{\sin 3\theta} r dr d\theta$$

= $\frac{1}{2} \int_0^{\pi/3} (\sin 3\theta)^2 d\theta = \frac{1}{4} \int_0^{\pi/3} (1 - \cos 6\theta) d\theta = \frac{\pi}{12}$

17. (a) Hint: sketch a picture. Use cylindrical coordinates to write the integral as

$$\int_0^{\pi} \int_0^1 \int_{r^2}^r z^3 dz r dr d\theta = \int_0^{\pi} \int_0^1 \frac{z^4}{4} \Big|_{r^2}^r r dr d\theta$$
$$= \frac{1}{4} \int_0^{\pi} \int_0^1 (r^4 - r^8) r dr d\theta = \pi/60.$$

(b) 1/(4e). Indeed,

$$\int_0^1 \int_0^z \int_0^y z e^{-y^2} dx dy dz = \int_0^1 \int_0^z y z e^{-y^2} dy dz$$
$$= \text{(use sub } u = y^2 \text{ to finish it)}$$

18. (a) $\int_0^{2\pi} \int_0^1 \int_0^{1-r^2} (r^3 \cos^3 \theta + r^2 \cos \theta \sin \theta) dz r dr d\theta$ (b) Spherical coordinates $(x, y, z) = (\rho, \phi, \theta)$

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

where $\rho \ge 0, \phi \in [0, \pi], \theta \in [0, 2\pi)$. The side of the cone $z = \sqrt{x^2 + y^2}$ and the z-axis make an angle $\phi = \pi/4$, which is the upper limit for ϕ . The sphere has an equation $\rho = \sqrt{x^2 + y^2 + z^2} = 1$. Hence the mass of the ice-cream cone

$$M = \iiint \delta dV = \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi/4} \int_0^1 4z \rho^2 \sin \phi d\rho d\phi d\theta$$
$$= \int_0^{2\pi} \int_0^{\pi/4} \int_0^1 4\rho \cos \phi \rho^2 \sin \phi d\rho d\phi d\theta.$$