Review Exam
 Math 2243

Name

Id

Read each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your work. Incomplete solutions may receive partial credit if you have written down a reasonable partial solution.
(1) Let $u=(1,-3,2)$ and $v=(-4 i-k)$. Find:
(a) the vector projection of u onto v.
(b) the angle between u and v.
(c) the area of the triangle spanned by u and v.
(d) the equation of the plane through $P(1,1,1)$ with normal perpendicular to both u and v .
(2) Let $r(t)=(2 \sin t, 5 t, 2 \cos t)$. Find
(a) the length of the curve (helix) over $-10 \leq t \leq 10$.
(b) the equation of the tangent line to the curve when $t=\pi / 4$
(c) the curvature at any given time t (hint: $\left.\kappa(t)=\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right| /\left|r^{\prime}(t)\right|^{3}\right)$
(3) Find a vector orthogonal to the plane containing the points: $P(1,-1,0)$, $Q(-2,3,-4)$, and $R(1,1,1)$. Find the equation of the plane. Find the area of the triangle $P Q R$.
(4) Let $h(x, y)=\sqrt{9-x^{2}-y^{2}}$
(a) Find and sketch the domain of the function h

(b) Find the range of $h(x, y)$
(5) Use the definition of continuity to explain whether or not the function $f(x, y)$ is continuous at $(0,0)$

$$
f(x, y)= \begin{cases}\frac{3 x^{2} y}{x^{2}+2 y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(6) (a) Find all critical points, extrema and saddle points of $g(x, y)=x^{4}+$ $y^{4}-4 x y+1$
(b) Find the absolute maximum and absolute minimum of values of $f(x, y)=$ $x^{2}+y^{2}+x^{2} y+4$ on the region $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$
(7) (a) Use the limit definition to find the partial derivative $\frac{\partial f(x, y)}{\partial y}$ where $f(x, y)=x^{2} y$.
(b) Find the indicated partial derivatives: $f_{x y}, f_{y x}$, where $f(x, y)=y e^{\frac{x}{y}}$
(c) Find the directional derivative of $f(x, y, z)=x^{2}-x^{2} y^{3}+10 z+30$ at $(1,1,1)$ in the direction $\mathbf{v}=(2,0,1)$.
(8) Let $w=\cos (x+3 y), x=r^{2}+s^{2}$ and $y=r s$
(a) Use the Chain rule to express w_{r} and w_{s} as functions of r and s.
(b) Evaluate w_{r} and w_{s} at $(r, s)=(0, \pi)$.
(9) Let $g(x, y)=\ln \left(x^{2}+y^{2}\right)$.
(a) Find the partial derivatives g_{x} and g_{y}.
(b) Find the equation of the tangential plane to the surface $z=g(x, y)$ at $(0,1,0)$.
(c) Find the linearization $L(x, y)$ of the function $g(x, y)$ at the point $(0,1)$.
(d) Give an estimate for the value $g(-0.1,0.9)$.
(e) Calculate $\Delta g:=\left(\partial_{x}^{2}+\partial_{y}^{2}\right) g$.
(10) (a) Find the differential of $u=\sqrt{x^{2}+y^{2}+z^{2}}$.
(b) Find the tangent plane to the surface $z=y \ln x$ at $(1,4,0)$.
(c) Use the Chain rule (plot a tree diagram) to find the indicated partial derivatives $u=x^{2}+\sqrt{y^{2}+z^{2}}, x=\sin (r) \cos (s), y=\sin (r) \sin (s)$, $z=3$. Find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$. Your final answer should be given in terms of r and s only.
(11) (a) $*$ (optional) Find the area of the surface for the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
(b) Find the volume of the tetrahedron enclosed by the planes: $x+2 y+z=$ $2, x=0, z=0$, and $y=2 x$.
(12) Quick answer:
(a) The curvature of $x^{2}+y^{2}=49$ is
(b) How is the gradient at a point related to the level curve through that point?
(c) If z depends upon u and v, and u and v depend upon t, then \qquad
(d) The graph of $r(t)$ is a
(e) The graph of $z=f(x, y)$ is a
(f) The graph of $r(t)=\langle t+1,2 t-1,3 t\rangle$ is
(g) Given a vector valued function $r(t)$, where does the acceleration lie ?
(13) (a) Evaluate the line integral $\int_{C} x y d x+(x+y) d y$ along:
(i) That part of the graph of $y=x^{2}$ from $(-1,1)$ to $(2,4)$
(ii) The line segment from $(-1,1)$ to $(2,4)$
(iii) The broken line from $(-1,1)$ to $(2,1)$ to $(2,4)$.
(b) Evaluate the line integral: $\int_{c} x y^{3} d s, C$ is the left half of the circle $x^{2}+y^{2}=4$
(14) (a) Determine whether or not $\mathbf{F}(x, y)=(2 x \cos y-y \cos x) \mathbf{i}+\left(-x^{2} \sin y-\right.$ $\sin x) \mathbf{j}$ is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.
(b) Show that $\mathbf{F}(x, y)=\left(e^{x}(\sin (x+3 y)+\cos (x+3 y)), 3 e^{x} \cos (x+3 y)\right)$ is conservative and find a potential function. (hint: verify that $\frac{\partial M}{\partial y}=$ $\frac{\partial N}{\partial x}$)
(c) Show that $\mathbf{F}(x, y)=(M, N, P)=\left(2 x y z+3 y^{2}, x^{2} z+6 x y-2 z^{3}, x^{2} y-\right.$ $6 y z^{2}$) is conservative and find a potential function. (hint: show that $\overrightarrow{\operatorname{curl}} \mathbf{F}=\left(P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right)=\mathbf{0}$
(15) Use the Fundamental Theorem for line integrals to evaluate $\int_{c} \mathbf{F} \cdot d \mathbf{r}$ along a very complicated curve C from $(1,-1,0)$ to $(2,2,-3)$, and $\mathbf{F}(x, y, z)=$ $y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}$.
(16) Let T be the unit tangent and N the (outward) unit normal for a curve C : $t \mapsto \mathbf{r}(t)$ on [a, b]. Let R be a simply connected bounded open domain in \mathbf{R}^{2}, where $F=M i+N j$ is continuously differentiable.
(a) Scalar line integral on \mathbf{R}^{2} is:
$\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t))\left|r^{\prime}(t)\right| d t=$ \qquad
(b) Vector line integral
$W=\int_{C} F \cdot T d s=\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t=$
(c) (optional)* Green's Theorem (circulation): $\oint_{\partial R} F \cdot T d s=\oint_{\partial R} M d x+$ $N d y=\iint_{R}(\nabla \times F) d x d y=$
(d) $(\text { optional })^{*}$ Green's Theorem (flux): $\oint_{\partial R} F \cdot N d s=\oint_{\partial R} M d y-N d x=$ $\iint_{R}(\nabla \cdot F) d x d y=$ \qquad .
(e) (optional)* Use Green's Theorem to evaluate the line integral along the given positively oriented curve: $\int_{C}\left(y^{2}+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y$ where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
(f) (optional)* Use Green's Theorem to evaluate $\int_{c} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=<\sqrt[2008]{x}+y^{2}, x^{2}+\frac{1}{1+y^{2008}}>, C$ consists of the arc of the curve $y=\sin x$ from $(0,0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0,0)$.
(17) (optional*) Let $\mathbf{F}(x, y, z)=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j}+z \mathbf{k}$.
(a) find curl \mathbf{F} and $\operatorname{div} \mathbf{F}$
(b) find div curl \mathbf{F}, i.e. the divergence of the vector field curl \mathbf{F}
(c) What is the physical meaning of curl \mathbf{F} ?
(18) (optional)* Find the area of the surface for the part of the sphere $x^{2}+$ $y^{2}+z^{2}=9$ that lies within the cylinder $(x-2)^{2}+y^{2}=1$ and above the $x y$-plane.
(19) (optional*)
(a) Evaluate the integral $\iint_{R} x^{2} d A$ where R is the region bounded by $y=-2 x$ and $y=2 x-x^{2}$.
(b) Find the area of one loop of the polar curve $r=\sin 3 \theta$
(Hint: You can think of the area formula by Green's Theorem Area $=$ $\frac{1}{2} \oint_{C} x d y-y d x=\frac{1}{2} \oint_{C} x d x+y d y, C$ a closed curve with counterclockwise orientation).
(20) Evaluate the triple integrals:
(a) $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} z^{3} d z d y d x$.
(b) $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z e^{-y^{2}} d x d y d z$.
(21) Set up a triple integral but do not evaluate it.
(a) $\iiint_{R}\left(x^{3}+x y\right) d V$ in cylindrical coordinates where R is the solid in the first octant that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.
(b) (optional*) using spherical coordinates for the mass of the ice-cream cone inside the cone $z=\sqrt{x^{2}+y^{2}}$ and topped off by $x^{2}+y^{2}+z^{2}=1$, with density $\delta(x, y, z)=4 z$.

Solutions:

1. (a) $\frac{\langle 24,0,6\rangle}{\sqrt{17 \cdot 17}}$
(b) $\theta=\cos ^{-1}\left(-\frac{6}{\sqrt{14 \cdot 17}}\right)=1.97025 \mathrm{rad}=113^{\circ}$
(c) Area $=\frac{1}{2}|u \times v|=\frac{\sqrt{202}}{2}$
(d) $3 x-7 y-12 z=-16$
2. (a) $20 \sqrt{29}$
(b) $r^{\prime}(t)=(2 \cos t, 5,-2 \sin t), T(t)=(2 \cos t, 5,-2 \sin t) / \sqrt{29}, \therefore \ell(t)=$ $(\sqrt{2}, 5 \pi / 4, \sqrt{2})+t(\sqrt{2}, 5,-\sqrt{2})$
(c) $2 / 29$. Indeed,

$$
\begin{aligned}
& \kappa=\left|\frac{d T}{d s}\right|=\frac{1}{|v|}\left|\frac{d T}{d t}\right| \\
= & \frac{1}{\sqrt{29}}|(-2 \sin t, 0,-2 \cos t)| / \sqrt{29}=2 / 29
\end{aligned}
$$

where $v=\left|r^{\prime}(t)\right|=\sqrt{4 \cos ^{2} t+5^{2}+4 \sin ^{2} t}=\sqrt{29}$.
3. Using cross product we find $N=P Q \times P R$ is orthogonal to the plane.

The equation of the plane is given by the standard form:

$$
N \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ can be taken to be any of the three point P, Q, or R .
Now, $P Q=Q-P=(-2,3,-4)-(1,-1,0)=\langle-3,4,-4\rangle, P R=$ $R-P=(1,1,1)-(1,-1,0)=\langle 0,2,1\rangle$

$$
N=\left|\begin{array}{ccc}
i & j & k \\
-3 & 4 & -4 \\
0 & 2 & 1
\end{array}\right|=12 i+3 j-6 k
$$

Hence the equation of the plane is

$$
\begin{aligned}
& \quad 12(x-1)+3(y-1)-6(z-1)=0 \\
& \text { or } 4 x+y-2 z=3
\end{aligned}
$$

Second method. Let the plane equation be $A(x-1)+B(y-1)+C(z-1)=0$. Substituting the coordinates of P and Q into this equation to obtain a relation between $\mathrm{A}, \mathrm{B}, \mathrm{C}$ which will tell the three components of N.
4. It is easy to check $2|x y| \leq x^{2}+y^{2} \leq x^{2}+2 y^{2}$ Hence

$$
\left|\frac{3 x^{2} y}{x^{2}+2 y^{2}}\right| \leq \frac{3}{2}|x| \rightarrow 0
$$

as $(x, y) \rightarrow 0$, which agrees with $f(0,0)$, and we know that $f(x, y)$ is continuous at $(0,0)$.
5 (a) Saddle at $(0,0)$, local at $(1,1),(-1,-1)$.
Indeed, Solve

$$
\begin{aligned}
& \left\{\begin{array}{l}
g_{x}=4 x^{3}-4 y=0 \\
g_{y}=4 y^{3}-4 x=0
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{3}-y=0 \\
y^{3}-x=0
\end{array}\right.
\end{aligned}
$$

Sub $y=x^{3}$ into $x=y^{3}$ to get $x=x^{9} \Rightarrow$

$$
x=0, x= \pm 1
$$

6(a) By definition

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial y}=\lim _{k \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k} \\
= & \lim _{k \rightarrow 0} \frac{x^{2}(y+k)-x^{2} y}{k}=\lim _{k \rightarrow 0} \frac{x^{2}(k)}{k} \\
= & \lim _{k \rightarrow 0} x^{2}=x^{2} .
\end{aligned}
$$

6 (b)

$$
f_{x y}=f_{y x}=-\frac{x}{y^{2}} e^{x / y}
$$

provided $y \neq 0$.
$\left[6\right.$ (c)] $D_{u} f=\left.\nabla f\right|_{(1,1,1)} \cdot \frac{u}{|u|}=(0,-3,10) \cdot \frac{(2,0,1)}{\sqrt{5}}=2 \sqrt{5}$
7 (a) By definition

$$
\begin{aligned}
& d u=u_{x} d x+u_{y} d y+u_{z} d z \\
= & \frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} d y+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} d z
\end{aligned}
$$

(b) If $z=f(x, y)$, then the graph of this function is a surface. At any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface, there is a tangent plane whose normal vector is given by $N=\left\langle f_{x}, f_{y},-1\right\rangle$. Then the equation is given by

$$
N \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 .
$$

(c) The Chain rule reads:

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial r} \\
\frac{\partial u}{\partial s} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s}
\end{aligned}
$$

8 (a) Let $z=f(x, y)=y^{2}-x^{2}$ and R the region on the $x y$-plane $\{(x, y)$: $\left.1 \leq \sqrt{x^{2}+y^{2}} \leq 2\right\}$. Then the Area of the surface

$$
\begin{aligned}
& S=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y \\
= & \int_{\theta=0}^{\theta=2 \pi} \int_{r=1}^{r=2} \sqrt{1+4 r^{2}} r d r d \theta
\end{aligned}
$$

where $f_{x}=-2 x, f_{y}=2 y$.
(b) The tetrahedron is bounded on the bottom by $y=2 x, x=0$ and $x+2 y=2$. The volume V can be evaluated over this triangle $\triangle O B C$ by a double integral. Here $O=(0,0), B=(2 / 5,4 / 5), C=(0,1)$. Let $z=2-x-2 y$, which is the equation of the plane on the top.

$$
V=\iint_{\triangle} z d x d y=\int_{x=0}^{x=2 / 5} \int_{y=2 x}^{y=1-\frac{x}{2}}(2-x-2 y) d y d x .
$$

9. (a) $1 / 7$
(b) "perpendicular to the tangent vector at the point, that is $\nabla F \cdot \mathbf{T}=0$, given that $F(x, y)=C$ is a level curve"
or alternatively, "orthogonal to the level curve".
(c) z is a function of t
(d) curve
(e) surface
(f) line
(g) a lies in the plane spanned by the tangential and principle normal of $\mathbf{r}=\mathbf{r}(t)$
10 (a) (i) $C(t)=\left(t, t^{2}\right), C^{\prime}(t)=(1,2 t)$,

$$
\begin{aligned}
& \int_{-1}^{2}\left(t^{3}+2 t\left(t+t^{2}\right)\right) d t=\int_{-1}^{2}\left(2 t^{2}+3 t^{3}\right) d t \\
= & \left.\left(\frac{2}{3} t^{3}+\frac{3}{4} t^{4}\right)\right|_{-1} ^{2}=69 / 4
\end{aligned}
$$

(ii) $C(t)=(-1,1)+(3,3) t=(-1+3 t, 1+3 t), C^{\prime}(t)=(3,3)$,

$$
\begin{aligned}
& w=\int_{-1}^{2} 3(-1+3 t)(1+3 t)+(3 t+3 t) d t \\
= & 3 \int_{-1}^{2}\left(9 t^{2}-1+6 t\right) d t=99
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& w=\int_{-1}^{2} x d x+\int_{1}^{4}(2+y) d y \\
= & \left.\frac{x^{2}}{2}\right|_{-1} ^{2}+\left.\left(2 y+\frac{y^{2}}{2}\right)\right|_{1} ^{4}=15 .
\end{aligned}
$$

b) The parametric equation for the left semi-circle is $r(t)=(2 \cos t, 2 \sin t)$, $t \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. So $s^{\prime}(t)=|v(t)|=|d r / d t|=|(-2 \sin t, 2 \cos t)|=2$. We have

$$
\begin{aligned}
& \int_{C} x y^{3} d s=\int_{\pi / 2}^{3 \pi / 2} \cos t(\sin t)^{3}|v(t)| d t \\
= & 2 \int_{\pi / 2}^{3 \pi / 2} \cos t(\sin t)^{3} d t=0 .
\end{aligned}
$$

11 a) check that $M_{y}=N_{x} \Rightarrow F$ is conservative.
To find f , notice that $\frac{\partial f}{\partial x}=M$,

$$
\begin{aligned}
& f(x, y)=\int M d x=\int(2 x \cos y-y \cos x) d x \\
= & x^{2} \cos y-y \sin x+h(y)
\end{aligned}
$$

To find $\mathrm{h}(\mathrm{y})$, taking derivative in y we get

$$
\begin{aligned}
& \partial_{y} f(x, y)=N(x, y) \Rightarrow \\
= & -x^{2} \sin y-\sin x+h^{\prime}(y)=-x^{2} \sin y-\sin x
\end{aligned}
$$

$\therefore h^{\prime}(y)=0$ and so $h(y)=C$
b) $f(x, y)=e^{x} \sin (x+3 y)$
c) It is conservative because:

$$
\begin{aligned}
& M_{y}=2 x z+6 y=N_{x}=2 x z+6 y \\
& N_{z}=P_{y}=x^{2}-6 z^{2} \\
& P_{x}=M_{z}=2 x y
\end{aligned}
$$

In order to find the potential function f such that $\nabla f=F$, that is, $f_{x}=M$, $f_{y}=N, f_{z}=P$, we integrate

$$
f=\int M d x=\int\left(2 x y z+3 y^{2}\right) d x=x^{2}(y z)+\left(3 y^{2}\right) x+g(y, z)
$$

Then, to recover $g(y, z)$, taking derivative in y both sides we get

$$
\begin{gathered}
f_{y}=N \\
\text { or } x^{2} z+(6 y) x+g_{y}^{\prime}(y, z)=x^{2} z+6 x y-2 z^{3} \\
\text { simplify } g_{y}^{\prime}(y, z)=-2 z^{3} \\
\Rightarrow g=\int\left(-2 z^{3}\right) d y=-2 z^{3} y+h(z)
\end{gathered}
$$

It remains to recover $h(z)$. To do that we take derivative in z both sides of $f=x^{2}(y z)+\left(3 y^{2}\right) x-2 z^{3} y+h(z)$ to obtain

$$
\begin{gathered}
f_{z}=P \\
\text { or } x^{2} y-6 z^{2} y+h^{\prime}(z)=x^{2} y-6 y z^{2} \\
\text { simplify } h^{\prime}(z)=0 \Rightarrow h(z)=\text { constant }
\end{gathered}
$$

Hence, $f(x, y, z)=x^{2} z y+3 x y^{2}-2 z^{3} y+C$.
12. The function F has a potential function (anti-derivative) $f=x y z+z^{2}$, because $\nabla f=F$. F.T.C tells that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(2,2,-3)-f(1,-1,0)=-3
$$

13. a) $\int_{a}^{b} f(r(t))|v(t)| d t$
b) $\int_{a}^{b} F(r(t)) \cdot d \mathbf{r}=\int_{C} M d x+N d y$
c) Let $F=\langle M, N\rangle$, then $\nabla \times F=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}$.

$$
\therefore \quad \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

d) $\nabla \cdot F=\left\langle\partial_{x}, \partial_{y}\right\rangle \cdot\langle M, N\rangle=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}$

$$
\therefore \quad \iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y
$$

14. (a) $64 / 5$
(b) $\pi / 12$
15^{*}. Find the area of the surface for the part of the sphere $x^{2}+y^{2}+z^{2}=9$ that lies within the cylinder $(x-2)^{2}+y^{2}=1$ and above the $x y$-plane.
[Solution] The surface $z=f(x, y)=\sqrt{9-x^{2}-y^{2}}$ is defined over R : $(x-2)^{2}+y^{2}=1$.

$$
\begin{aligned}
& f_{x}=\frac{-x}{\sqrt{9-x^{2}-y^{2}}}, \quad f_{y}=\frac{-y}{\sqrt{9-x^{2}-y^{2}}} \\
& 1+f_{x}^{2}+f_{y}^{2}=\frac{9}{9-x^{2}-y^{2}}
\end{aligned}
$$

Use polar coordinates $x=r \cos \theta, y=r \sin \theta$ to get

$$
\begin{aligned}
\text { Surface Area } & =\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A \\
& =\int_{-\pi / 6}^{\pi / 6} \int_{r=h(\theta)}^{r=g(\theta)} \frac{3}{\sqrt{9-r^{2}}} r d r d \theta
\end{aligned}
$$

where $g(\theta)=2 \cos \theta-\sqrt{4 \cos ^{2} \theta-3}, h(\theta)=2 \cos \theta+\sqrt{4 \cos ^{2} \theta-3}$. Note that $4 \cos ^{2} \theta-3 \geq 0$ if $-\pi / 6 \leq \theta \leq \pi / 6$.
19 (a) Area $=\frac{1}{2} \oint_{C} x d y-y d x$
(b) The curve has three leaves or loops. Because of symmetry, we look at the one in the first quadrant, bounded by $\theta=0$ and $\theta=\pi / 3$. Hence

$$
\begin{aligned}
& \text { Area of one loop }=\iint d A=\int_{0}^{\pi / 3} \int_{0}^{\sin 3 \theta} r d r d \theta \\
= & \frac{1}{2} \int_{0}^{\pi / 3}(\sin 3 \theta)^{2} d \theta=\frac{1}{4} \int_{0}^{\pi / 3}(1-\cos 6 \theta) d \theta=\frac{\pi}{12}
\end{aligned}
$$

17. (a) Hint: sketch a picture. Use cylindrical coordinates to write the integral as

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{1} \int_{r^{2}}^{r} z^{3} d z r d r d \theta=\left.\int_{0}^{\pi} \int_{0}^{1} \frac{z^{4}}{4}\right|_{r^{2}} ^{r} r d r d \theta \\
= & \frac{1}{4} \int_{0}^{\pi} \int_{0}^{1}\left(r^{4}-r^{8}\right) r d r d \theta=\pi / 60 .
\end{aligned}
$$

(b) $1 /(4 e)$. Indeed,

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z e^{-y^{2}} d x d y d z=\int_{0}^{1} \int_{0}^{z} y z e^{-y^{2}} d y d z \\
= & \text { (use sub } u=y^{2} \text { to finish it) }
\end{aligned}
$$

18. (a) $\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}}\left(r^{3} \cos ^{3} \theta+r^{2} \cos \theta \sin \theta\right) d z r d r d \theta$
(b) Spherical coordinates $(x, y, z)=(\rho, \phi, \theta)$

$$
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right.
$$

where $\rho \geq 0, \phi \in[0, \pi], \theta \in[0,2 \pi)$. The side of the cone $z=\sqrt{x^{2}+y^{2}}$ and the z-axis make an angle $\phi=\pi / 4$, which is the upper limit for ϕ.
The sphere has an equation $\rho=\sqrt{x^{2}+y^{2}+z^{2}}=1$.
Hence the mass of the ice-cream cone

$$
\begin{aligned}
M & =\iiint \delta d V=\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi / 4} \int_{0}^{1} 4 z \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} 4 \rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

