Professor Zheng	Math 2331	(Linear Algebra)	Review Exam 2

NAME: \qquad

MARK BOX		
PROBLEM	POINTS	
1	10	
2	10	
3	10	
4	10	
TOTAL	40	

ID (last four digits)
please check the box of your section below
\square
or
\square

INSTRUCTIONS:

(1) To receive credits you must:
(a) work in a logical fashion, show all your work and indicate your reasoning to support and justify your answer
(b) when applicable put your answer on/in the line/box; use the back of the page if needed
(2) This exam covers (from Elementary Linear Algebra by Larson and Falvo $7^{\text {th }}$ ed.):

Sections 3.1 - 3.3; 4.1-4.4
(1) Compute the determinant.

$$
\left|\begin{array}{ccc}
1 & 1 & -2 \\
0 & 15 & 0 \\
2 & 2 & -4
\end{array}\right|
$$

(2) Find (i) the characteristic equation, (ii) the eigenvalues, and (iii) the corresponding eigenvectors of the matrix.
(a)

$$
\left|\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right|
$$

(b)

$$
\left|\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right|
$$

(3) (optional)* Find the adjoint $\operatorname{ad}(M)$ of the matrix $M=\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 3 & 2 \\ 3 & 0 & -1\end{array}\right)$.

Verify that $M \mathbf{a d}(M)=\mathbf{a d}(M) M=\operatorname{det}(M) I_{3}$.
(4) Definition. A vector \mathbf{u} is said to be in the null space of a matrix A provided

$$
A \mathbf{u}=\mathbf{0}
$$

or, equivalently, \mathbf{u} is an eigenvector corresponding to the zero eigenvalue of A.
Which of the following vectors, if any, is in the null space of $A=\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 3 \\ 1 & 0 & 2 & 2\end{array}\right)$?
a) $\left[\begin{array}{lll}-1 & 0 & 1\end{array} 0\right]^{T}$
b) $[021-1]^{T}$
c) $[042-2]^{T}$
(5) Determine which of the following statements are equivalent to the fact that a matrix A of size $n \times n$ is invertible?
a) A is nonsingular
b) The row space of A has dimension n
c) The column space of A has dimension n
d) The determinant of A is nonzero
e) The system $A \mathbf{x}=\mathbf{b}$ has a unique solution for any given \mathbf{b} in \mathbf{R}^{n}
f) The system $A \mathbf{x}=\mathbf{0}$ has nonzero solution
g) The dimension of the null space of A is zero
h) The rows of A are linear independent
i) The columns of A are linear independent
j) The rank of A is n
k) A is row-equivalent to an identity matrix
l) All eigenvalues of A are nonzero
m) A can be written as the product of elementary matrices.
(6) (optional ${ }^{*}$) The matrix $A=\left(\begin{array}{cccc}2 & 1 & 3 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 1\end{array}\right)$ row reduces to $C=\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
a) Find the rank and nullity of A.
b) Find a basis of the row space and the column space of A respectively.
c) Find a basis of the null space of A
d) Does the system $A \mathbf{x}=\left(\begin{array}{c}109 \\ -217 \\ 66\end{array}\right)$ have a solution? (Hint: You can draw a conclusion from the fact that dimension of column space is 3 , without having to solve the system. Recall that $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=\operatorname{dim}(\operatorname{Row}(A)))$
e) What is the relation between $\operatorname{rank}, \operatorname{dim}(\operatorname{null}(A))$?(Hint: Theorem 4.17 (pp.196) states that $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{null}(A))=n$, the number of columns)
(7) Find all the eigenvalues of the given matrix.
а) $\left(\begin{array}{ccc}1 & -2 & 0 \\ -3 & 1 & 0 \\ -4 & -5 & 1\end{array}\right)$
b) $\left(\begin{array}{cc}1 & 9 \\ 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$
where $i=\sqrt{-1}\left(i^{2}=-1\right)$ is the unit for pure imaginary numbers.
(8) We say a vector \mathbf{u} is a linear combination of a finite set of vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ if there exist constants c_{1}, c_{2}, c_{3} such that

$$
\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}
$$

Determine whether one can write $\mathbf{u}=\left[\begin{array}{lll}8 & 3 & 8\end{array}\right]^{T}$ as a linear combination of the vectors in the set S.

$$
S=\left\{\left[\begin{array}{lll}
4 & 3 & 2
\end{array}\right]^{T},\left[\begin{array}{lll}
0 & 3 & 2
\end{array}\right]^{T},\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]^{T}\right\}
$$

Solutions 2 (a). (i) The characteristic equation is $|\lambda I-A|=0$, that is,

$$
\left|\begin{array}{cc}
\lambda-4 & 5 \\
-2 & \lambda+3
\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)=0
$$

(ii) The eigenvalues are solutions to the characteristic equation:

$$
\lambda_{1}=-1, \quad \lambda_{2}=2
$$

(iii) The eigenvectors corresponding to $\lambda=-1$ is the set of nonzero solutions to $(\lambda I-A) \mathbf{x}=\mathbf{0}$

$$
\left(\begin{array}{ll}
-5 & 5 \\
-2 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

Solving it yields

$$
\binom{x_{1}}{x_{2}}=t\binom{1}{1} \quad t \neq 0
$$

Similarly the eigenvectors corresponding to $\lambda=2$ are

$$
\left(\begin{array}{ll}
-2 & 5 \\
-2 & 5
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

Solving it yields

$$
\binom{x_{1}}{x_{2}}=t\binom{5}{2} \quad t \neq 0
$$

2 (b). (i) The characteristic equation reads

$$
\left|\begin{array}{ccc}
\lambda-1 & 1 & 1 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right|=0
$$

(ii) The eigenvalues are obtained by solving the above equation. We start with simplifying

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\lambda-1 & 1 & 1 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right|=\left|\begin{array}{ccc}
\lambda-2 & \lambda-2 & 0 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right| \\
& =(\lambda-2)\left|\begin{array}{ccc}
1 & 1 & 0 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right|=(\lambda-2)\left|\begin{array}{ccc}
1 & 0 & 0 \\
-1 & \lambda-2 & -1 \\
3 & -4 & \lambda+1
\end{array}\right| \\
& =(\lambda-2)\left|\begin{array}{cc}
\lambda-2 & -1 \\
-4 & \lambda+1
\end{array}\right| \\
& =(\lambda-2)(\lambda+2)(\lambda-3) .
\end{aligned}
$$

Hence $\lambda_{1}=-2, \lambda_{2}=2$ and $\lambda_{3}=3$.
2 (b) (iii) To find the eigenvectors for λ, we solve the linear homogeneous equation

$$
\left[\begin{array}{ccc}
\lambda-1 & 1 & 1 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

If $\lambda_{1}=-2$, row reduction yields

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\lambda_{1}-1 & 1 & 1 \\
-1 & \lambda_{1}-3 & -1 \\
3 & -1 & \lambda_{1}+1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{4} \\
0 & 1 & \frac{1}{4} \\
0 & 0 & 0
\end{array}\right] } \\
\Rightarrow & \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{4} \\
1
\end{array}\right) \quad t \neq 0 .
\end{aligned}
$$

The eigenvectors for λ_{2} and λ_{3} can be found in a similar way. If $\lambda_{3}=3$, say, row reduction yields

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\lambda_{3}-1 & 1 & 1 \\
-1 & \lambda_{3}-3 & -1 \\
3 & -1 & \lambda_{3}+1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] } \\
\Rightarrow & \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \quad t \neq 0 .
\end{aligned}
$$

3*. By definition the adjoint matrix of a matrix $A=\left(C_{i j}\right)_{n \times n}$ is given by

$$
\operatorname{ad}(A)=\left(\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right)
$$

where $C_{i j}=(-1)^{i+j} M_{i j}$ are cofactors of A.

$$
\left(\begin{array}{ccc}
-3 & 0 & -6 \\
6 & -5 & 2 \\
-9 & 0 & -3
\end{array}\right)
$$

A straight forward computation shows $M \mathbf{a d}(M)=\mathbf{a d}(M) M=-15 I_{3}$.
4. Answer: (b) and (c). If multiplying A and the vector in (b), we will have $A \mathbf{u}=0$. The same occurs for (c).
(Here is some more details. Given a matrix A, the null space $N u l l(A)$ is a vector space consisting of all those vectors \mathbf{u} satisfying the equation $A \mathbf{x}=0$.

So if you want to check if certain vector u is in the null space, all you need to do is to substitute $\mathbf{x}=\mathbf{u}$ into the linear equation $A \mathbf{x}=0$.

If you find $A \mathbf{u}=0$ then \mathbf{u} belongs to $\operatorname{Null}(A)$; otherwise it does not belong to $\operatorname{Null}(A)$.)
6*. (a) $\operatorname{Rank}(A)=3$. $\operatorname{nullity}(A)=1$ (nullity is the dimension for the null space of A)
(b) A basis for $\operatorname{Row}(A)$ is given by $\left\{\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]^{T},\left[\begin{array}{llll}1 & -1 & 0 & 1\end{array}\right]^{T},\left[\begin{array}{llll}1 & 1 & 2 & 1\end{array}\right]^{T}\right\}$. A basis for $\operatorname{Col}(A)$ is given by $\left\{\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]^{T},\left[\begin{array}{lll}3 & 0 & 2\end{array}\right]^{T},\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}\right\}$.
(c) The solutions to $A \mathbf{x}=\mathbf{0}$ consist vectors of the form $\left\{t\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right), t \neq 0\right\}$. So a basis can be chosen as $\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right)$.
(d) Yes. Because the dimension of the column space of A equals to 3 , and, the dimension of the column space of the augmented matrix $[A b]$ is also 3 . We see that the column space and the augmented space are consistent in the case. Therefore the system $A \mathbf{x}=\mathbf{b}$ is consistent or solvable.
(e) $\operatorname{Rank}(A)+\operatorname{dim}(\operatorname{null}(A))=3+1=4$ which should be the number of columns.
7. (a) The eigenvalues are solutions of

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\lambda-1 & 2 & 0 \\
3 & \lambda-1 & 0 \\
4 & 5 & \lambda-1
\end{array}\right|=0 \\
& (\lambda-1)\left|\begin{array}{cc}
\lambda-1 & 2 \\
3 & \lambda-1
\end{array}\right|=(\lambda-1)\left(\lambda^{2}-2 \lambda-5\right)=0
\end{aligned}
$$

Hence $\lambda_{1}=1, \lambda_{2,3}=1 \pm \sqrt{6}$.
7 (c). $\lambda= \pm i$.
7 (d) $\lambda= \pm 1$.
7. (e) Solving

$$
\left|\begin{array}{cc}
\lambda & -i \\
-i & \lambda
\end{array}\right|=\lambda^{2}+1=0
$$

we obtain $\lambda_{1}=i, \lambda_{2}=-i$.
(8) We can rewrite $\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}$ in the form

$$
\left(\begin{array}{lll}
4 & 0 & 0 \\
3 & 3 & 0 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
8 \\
3 \\
8
\end{array}\right) .
$$

Solve this equation using either row reduction or in the traditional way as follows.

$$
\begin{aligned}
&\left\{\begin{array} { l }
{ 4 c _ { 1 } = 8 } \\
{ 3 c _ { 1 } + 3 c _ { 2 } = 3 } \\
{ 2 c _ { 1 } + 2 c _ { 2 } + 2 c _ { 3 } = 8 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=2 \\
c_{1}+c_{2}=1 \\
c_{1}+c_{2}+c_{3}=4
\end{array} \Rightarrow\right.\right. \\
& \therefore \mathbf{c}=\left[\begin{array}{ll}
c_{1}, c_{2}, c_{3}
\end{array}\right]^{T}=\left[\begin{array}{ll}
2-1 & 3
\end{array}\right]^{T}
\end{aligned}
$$

