Math 3230 Review Test I

It is necessary to show your work in order to receive credits or partial credits.

1. Verify that the equation $y^2 = x^2 - C$, where C is a constant, satisfies the differential equation

$$\frac{dy}{dx} = \frac{x}{y}$$

2. Find the exact solution of the initial value problem

$$\frac{dy}{dx} = y^2 \cos x, \quad y(0) = 1$$

3. Find the solution to the initial value problem

$$x' = x \sin t + 2te^{-\cos t}, \quad x(0) = 1$$

4. Determine if the equation is exact and solve it if it is.

$$(2x\sin y + 3x^2y)dx + (x^3 + x^2\cos y + y^2)dy = 0$$

5. (a) Determine if the differential equation

$$ydx + (y - x)dy = 0$$

is homogeneous. If so, determine its degree. (b) Solve the equation.

6. * Find a general solution of

$$\frac{dy}{dx} = 6\frac{y}{x} - xy^2$$

7. * Use the Existence and Uniqueness Theorem for linear IVPs to determine the largest interval on which the solution is guaranteed to exist.

$$y' + \frac{2y}{x^2 - 9} = \frac{x}{x^2 - 9}, \ y(4) = -3$$

- 8. Figure 1 (Page 3) is the direction field for the differential equation y' = y(y-1)(y+1).
 - (a) Draw on the direction field the solutions of the differential equation satisfying each of the following initial values.
 - i. y(0) = 0.0ii. y(0) = 0.5

iii. y(0) = -1.5

- (b) For the solution y(t) with initial condition y(0) = 0.5, what is $\lim_{t\to\infty} y(t)$ and $\lim_{t\to-\infty} y(t)$?
- (c) For the solution y(t) with initial condition y(0) = -1.5, what is $\lim_{t\to\infty} y(t)$ and $\lim_{t\to-\infty} y(t)$?
- 9. Figure 2 (Page 3) is the direction field for the differential equation y' = y t.
 - (a) Draw on the direction field the solutions of the differential equation satisfying each of the following initial values.
 - i. y(0) = 0.0ii. y(0) = 1.0iii. y(0) = -1.0
 - iv. y(0) = 2.0
 - (b) Are there any constant solutions y = c to this differential equation? If so, show them on the direction field.
 - (c) Are there any straight line solutions y = mt + b? If so indicate them on the direction field.
 - (d) There is a number c such that all solutions with initial condition y(0) > c satisfy $\lim_{t\to\infty} = \infty$ and all solutions with initial condition y(0) < c satisfy $\lim_{t\to\infty} = -\infty$. Find this number c by inspecting the direction field.

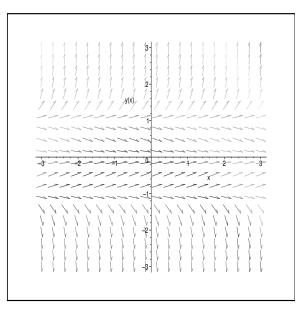
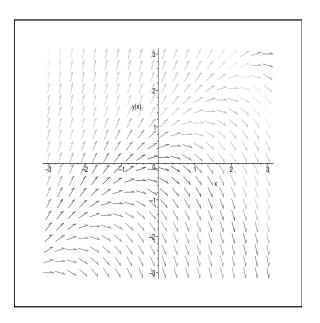


Figure 2: Direction Field for Exercise 9



- 10. Determine if each of the following equations is separable (yes or no), and/or linear (yes or no). Do **not** solve the equations!!
 - (a) $y' = y^2 t$ (b) $t^2y' = 1 - 2ty$ (c) yy' = 3 - 2y(d) $\frac{y'}{y} = y - t$ (e) ty' = y - 2ty(f) $(t^2 + 3y^2)y' = -2ty$ (g) $y' = ty^2 - y^2 + t - 1$ (h) t + y' = y - 2ty

11. Solve each of the following initial value problems. You **must** show your work.

- (a) $y' = 2y + 5e^{2t}$, y(0) = -1. (b) $y' = y^2 t^3$, y(1) = -1. (c) $y' + 3y = 4e^{-3t} \sin 2t$, y(0) = -1. (d) $y' + \frac{3}{t}y = 7t^3$, y(1) = -1.
- 12. * Newton's law of cooling states that the rate at which a body cools (or heats up) is proportional to the difference between the temperature of the body and the temperature of the surrounding medium. A turkey which is initially at room temperature (70° F) is placed in a 350° F oven at time t = 0. Write an initial value problem which is satisfied by the temperature T(t) of the turkey at time t.
- 13. * A tank contains 100 gal of brine made by dissolving 80 lb of salt in water. Pure water runs into the tank at the rate of 4 gal/min, and the mixture, which is kept uniform by stirring, runs out at the same rate. Find the amount y(t) of salt in the tank at any time t.

Solutions

1. Regard $y^2 = x^2 - C$ as an equation that implicitly defines y = y(x) as a function of x. Taking derivative in x both sides by Chain rule yields

$$2y\frac{dy}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{x}{y}.$$

2. Separate variables to obtain

$$\frac{dy}{y^2} = \cos x dx$$
$$\int \frac{dy}{y^2} = \int \cos x dx$$
$$-y^{-1} = \sin x + C$$
$$y = \frac{-1}{\sin x + C}$$

In order to determine C, you will need to plug in the initial condition y(0) = 1.

3. This is first order linear ODE x' + Px = Q, where $P = -\sin t$, $Q = 2te^{-\cos t}$. The general formula gives

$$\begin{aligned} x(t) &= e^{-\int P} \int e^{\int P} Q dt = e^{\int (\sin t)} \int e^{\int (-\sin t)} 2t e^{-\cos t} dt \\ &= e^{\int (\sin t)} \int e^{\cos t} 2t e^{-\cos t} dt = e^{\int (\sin t)} \int 2t dt \\ &= e^{-\cos t} (t^2 + C) \end{aligned}$$

Now plugging in t = 0, x = 1 to obtain C = e.

4. It is Exact by the following test: The differential form Mdx + Ndy = 0 is exact \iff

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$$

Since it is exact, there exists f(x, y) such that $df = f_x dx + f_y dy = M dx + N dy$. We will solve f to obtain the equation f(x, y) = C which implicitly defines the solution of

$$(2x\sin y + 3x^2y)dx + (x^3 + x^2\cos y + y^2)dy = 0$$

From $\frac{\partial f}{\partial x} = 2x \sin y + 3x^2 y$ we get

$$f(x,y) = \int (2x\sin y + 3x^2y)dx = x^2\sin y + x^3y + C(y)$$

Taking derivative in y of the above yields

$$\partial_y f(x, y) = \partial_y (x^2 \sin y + x^3 y + C(y))$$

= $x^2 \cos y + x^3 + C'(y) = N = x^3 + x^2 \cos y + y^2$

which suggests $C'(y) = y^2 \to C(y) = y^3/3$. Hence we arrive at the equation

$$f(x,y) = x^2 \sin y + x^3 y + y^3/3 = C.$$

- 5. a) The standard equation is Mdx + Ndy = 0. Compare and we see that M(x, y) = y and N(x, y) = y x. This is homogeneous of degree k = 1.
 - (b) Sub $x = yv \longrightarrow dx = ydv + vdy$.

$$y(ydv + vdy) + (y - yv)dy = 0$$

$$y^{2}dv + ydy = 0$$

$$ydv + dy = 0$$

Substitute back $v = x/y$ to obtain

$$x = y \ln |y| + Cy$$

or $y = C_{2}e^{x/y}$

where C_2 is an arbitrary number.

6. This is first-order quadratic equation (Bernoulli type). n = 2 Substitution $w = y^{1-n} = y^{-1} \rightarrow y = w^{-1}$. We have $\frac{dy}{dx} = -w^{-2}\frac{dw}{dx}$ and so

$$-w^{-2}\frac{dw}{dx} = 6\frac{w^{-1}}{x} - xw^{-2}$$

(multiplying $-w^2$ both sides \rightarrow) $\frac{dw}{dx} = -6\frac{w}{x} + x$

This is a 1st-order ODE, you can solve to get w = w(x) and then replace w by y^{-1} and then simplify to obtain the solution y = y(x).

Indeed,

$$w = w(x) = e^{-\int \frac{6}{x}} \left(\int e^{\int \frac{6}{x}} x dx \right)$$
$$= e^{-6\ln|x|} \left(\int x^6 x dx \right) = x^{-6} (x^8/8 + C)$$
$$= x^2/8 + Cx^{-6}.$$

From this we obtain $y = \frac{1}{x^2/8 + Cx^{-6}}$.

- 7. By the Existence and Uniqueness Theorem for first order linear ODE in Section 2.1, we know that the interval of existence is where both P and Q are continuous. Here $P = \frac{2}{x^2-9}, Q = \frac{x}{x^2-9}$ for which there are three open intervals $(-\infty, -3), (-3, 3), (3, \infty)$ on which P and Q are continuous simultaneously. However, only on $(3, \infty)$ can defines a solution y = y(x) whose graph passes (4, -3). So the largest interval must be $(3, \infty)$.
- 10. (a) Not separable, nonlinearb) not separable, linear

c) separable, nonlinear

- d) not separable, nonlinear
- e) separable, linear
- f) not separable, nonlinear
- g) separable, nonlinear. In fact,

$$y' = (t-1)y^2 + (t-1)$$

 $y' = (t-1)(y^2 + 1)$

You see that the r.h.s is a product of f(t)g(y). h) not separable, linear

11. (a)

$$y(t) = e^{\int 2dt} \int e^{\int (-2)dt} 5e^{2t} dt$$
$$= e^{-2t}(5t+C)$$

Plug in y(0) = -1 to get C = -1.

(b) Separate variables and then integrate both sides to get

$$\int y^{-2} dy = \int t^3 dt$$
$$-y^{-1} = t^4/4 + C$$
$$\therefore y = (-t^4/4 - C)^{-1}$$

Plugging in $t = 1, y = -1 \rightarrow y = (-t^4/4 - 3/4)^{-1}$

$$y(t) = e^{-\int p} \left(\int e^{\int p} Q dt + C \right)$$
$$= e^{-\int 3dt} \int e^{\int 3dt} 4e^{-3t} \sin 2t dt$$
$$= e^{3t} \int 4\sin 2t dt = 2e^{3t} (-\cos 2t + C)$$

The I.C. y(0) = -1 then gives C = 1/2. (d)

$$y(t) = e^{-\int \frac{3}{t}dt} \int e^{\int 3/t dt} 7t^3 dt$$
$$= t^{-3} \int t^3 7t^3 dt = t^{-3}(t^7 + C) = t^4 + Ct^{-3}$$

The I.C. (1, -1) gives C = -2.

12. Newton's law of heating: let T = T(t) be the temperature at time t.

$$\frac{dT}{dt} = (350 - T)$$
$$T(0) = 70$$

13. Assume that the volume of brine is constantly 100 gal any time. Denote y = y(t) the amount of salt at time t. When initially t = 0, y(0) = 80 (*lb*). Then every minus ($\Delta t = 1$) the rate of change is $\Delta y = -4 \times$ density of brine at time $t = -4\frac{y(t)}{100}$. So the model is given by the equation

$$\frac{\Delta y}{\Delta t} = -4\frac{y}{100}$$
$$\frac{dy}{dt} = -4\frac{y}{100}$$