Math 3230

Review Exercises for Exam 2

It is necessary to show your work in order to receive credits or partial credits.

1. a) Find a fundamental set of solutions of $y^{\prime \prime}-4 y^{\prime}+9 y=0$ and write the general solution. b) Explain why the two solutions you find in part (a) are linearly independent.
2. a) Find a fundamental set of solution of $y^{\prime \prime \prime}+y=0$. b) Explain why the three solutions you find in part (a) are linearly independent (using the Wronskian).
3. [optional*] Let m, k, a, b be constants. Solve the (second-order linear) IVP

$$
\left\{\begin{array}{l}
m x^{\prime \prime}(t)+k x(t)=0 \\
x(0)=a, x^{\prime}(0)=b
\end{array}\right.
$$

4. Use the method of undetermined coefficients to find the solution to IVP

$$
y^{\prime \prime}+4 y=t^{2}+3 e^{t}, \quad y(0)=0, y^{\prime}(0)=2
$$

5. Use the method of undetermined coefficients to find the general solution to the equation

$$
y^{\prime \prime}+y^{\prime}-2 y=8 \sin 2 t
$$

6. Find the solution to the initial value problem

$$
x^{\prime}=x \sin t+2 t e^{-c o s t}, \quad x(\pi)=-1
$$

7. Solve

$$
x^{2} \frac{d^{2} u}{d x^{2}}+7 x \frac{d u}{d x}-7 u=0
$$

8. Use variation of parameters to find the general solution to the equation

$$
x^{\prime \prime}+x=\csc t
$$

9. * Find a general solution of

$$
\frac{d y}{d x}=-\frac{y}{x}-x y^{2}
$$

10. * Use the Existence and Uniqueness Theorem for linear IVPs to determine the largest interval on which the solution is guaranteed to exist.

$$
y^{\prime}+\frac{2 y}{x^{2}-9}=\frac{x}{x^{2}-9}, y(4)=-3
$$

11. a) State the Definitions of Linear Dependent and Linear Independent for $S=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$, a set of n functions.
b) State the Principle of Superposition
c) (Existence and Uniqueness for second-order) Suppose $p(t), q(t)$ and $f(t)$ are \qquad on an open interval (a, b) containing $t=t_{0}$. Then the IVP

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}
$$

has a \qquad solution on (a, b). (Hint: Read Chap.4)
12. Use the method of variation of parameters to find a general solution to the equation $y^{\prime \prime}-2 y^{\prime}+y=e^{t} \ln t$.
13. Find a general solution to the equation $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0$
14. Write the following equation for $y=y(x)$ as a system of first-order, linear differential equations

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+6 y^{\prime}+3 y=x
$$

15. Write the following initial value problem as a system of first-order, linear differential equations in matrix notation

$$
y^{\prime \prime}+2 y^{\prime}+4 y=3 \cos 2 t, \quad y(0)=1, y^{\prime}(0)=0
$$

16. * Find the eigenvalues and corresponding eigenvectors of the matrix $A=\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$
17. Determine whether $\Phi(t)=\left(\begin{array}{cc}\cos t+2 \sin t & 2 \cos t-\sin t \\ \sin t & \cos t\end{array}\right)$ is a fundamental matrix for the linear system $X^{\prime}(t)=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right) X(t)$
18. a) Verify $\Phi(t)=\left(\begin{array}{ll}3 e^{4 t} & e^{3 t} \\ 2 e^{4 t} & e^{3 t}\end{array}\right)$ is a fundamental matrix for the system $X^{\prime}(t)=\left(\begin{array}{cc}6 & -3 \\ 2 & 1\end{array}\right) X(t)$ b) Find a general solution to the system in (a)
c) Find the solution that satisfies initial condition $X(0)=\binom{6}{-4}$
19. Find the general solution to the system

$$
Y^{\prime}=\left(\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right) Y
$$

20. * Use the method of undetermined coefficients to find the solution of the system

$$
Y^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) Y+\binom{0}{-2 t}
$$

21. The eigenvalues and eigenvectors for the matrix $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ -6 & 5 & 0 \\ 0 & 0 & 1\end{array}\right)$ are $\lambda=1,2,3$ and $(0,0,1)^{T},(1,2,1)^{T}$, and $(1,3,0)^{T}$, respectively. Consider the IVP

$$
X^{\prime}=A X, \quad X(0)=X_{0}
$$

where $X_{0}=(3,7,4)^{T}$. a) Find a fundamental set of solutions to the 3 by 3 linear system $X^{\prime}=A X$, and verify the linear independency using the Wronskian. b) Solve the IVP.
22. Use the method of undetermined coefficients to find a general solution for

$$
Y^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) Y+\binom{t}{-1}
$$

23. Use variation of parameters to find a general solution for

$$
X^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) X+\binom{e^{-t}}{0}
$$

24. * Consider the system

$$
Y^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) Y \quad-\infty<t<\infty
$$

(a) Find a real-valued fundamental set of solutions of general solution. (b) Identify its equilibrium solution, classify the type and stability characteristics of the equilibrium point.
25. A 3 -lb weight stretches a spring 3 in . The mass is raised 1 in above its equilibrium position and then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{sec}$, and if there is no damping, determine the displacement function of the mass at any time t.
26. An object of mass $1 \mathrm{lb}-s^{2} / \mathrm{ft}$ is attached to a spring with spring constant $k=1.25 \mathrm{lb} / \mathrm{ft}$ and is subject to a resistive force $F_{r}=2 d x / d t$. Determine the displacement of the mass if the object is released from the equilibrium position with an initial velocity of $3 \mathrm{ft} / \mathrm{sec}$ in the downward direction. (Hint: draw a picture with coordinates)
27. Answer the following questions concerning the differential equation

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}-y=6 t^{2} \tag{*}
\end{equation*}
$$

(a) Verify that $\varphi_{1}(t)=t$ and $\varphi_{2}(t)=\frac{1}{t}$ are solutions of the associated homogeneous differential equation $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$.
(b) Verify that $y_{p}(t)=2 t^{2}$ is a solution to equation (*).
(c) What is the general solution of equation (*)?
(d) What is the solution of the initial value problem

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}-y=6 t^{2}, \quad y(1)=-1, \quad y^{\prime}(1)=1 ? \tag{**}
\end{equation*}
$$

(e) What is the largest interval on which the initial value problem $(* *)$ is guaranteed to have a solution by the existence and uniqueness theorem? Is this answer consistent with the solution that you found in the previous part of this exercise?

Solution Key

1 (a) The characteristic equation is $r^{2}-4 r+9=0$ from which we get $r_{1}=2 \pm \sqrt{5} i$. Hence the fundamental set is $\left\{y_{1}, y_{2}\right\}=\left\{e^{2 t} \cos \sqrt{5} t, e^{2 t} \sin \sqrt{5} t\right\}$ The general solution is $y=e^{2 t}\left(C_{1} \cos \sqrt{5} t+\right.$ $\left.C_{2} \sin \sqrt{5} t\right)$
(b) The two solutions $y_{1}(t), y_{2}(t)$ are linear independent because they are not constant multiple of one another. Alternatively the Wronskian

$$
\begin{aligned}
&\left|\begin{array}{cc}
e^{2 t} \cos \sqrt{5} t & e^{2 t} \sin \sqrt{5} t \\
e^{2 t}(2 \cos \sqrt{5} t-\sqrt{5} \sin \sqrt{5} t) & e^{2 t}(2 \sin \sqrt{5} t+\sqrt{5} \cos \sqrt{5} t)
\end{array}\right|=2 \sqrt{5} e^{4 t} \neq 0 \\
& \Rightarrow \text { linear independent }
\end{aligned}
$$

2 (a) The characteristic equation for $y^{\prime \prime \prime}+y=0$ is

$$
\begin{gathered}
r^{3}+1=0 \quad(r+1)\left(r^{2}-r+1\right)=0 \\
\longrightarrow r_{1}=-1, r_{2}=\frac{1+\sqrt{3} i}{2}, r_{3}=\frac{1-\sqrt{3} i}{2}
\end{gathered}
$$

\therefore Fundamental set $\left\{y_{1}(t)=e^{-t}, y_{2}(t)=e^{t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right), e^{t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)\right\}$.
(b) We show that these three functions are linear independent.

Assume

$$
\begin{equation*}
C_{1} e^{-t}+C_{2} e^{t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{3} e^{t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)=0 \tag{1}
\end{equation*}
$$

Want to show: $C_{1}=C_{2}=C_{3}=0$. Multiplying $e^{-t / 2}$ both sides of (1) we obtain

$$
\begin{equation*}
C_{1} e^{-3 t / 2}+C_{2} \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{3} \sin \left(\frac{\sqrt{3}}{2} t\right)=0 \tag{2}
\end{equation*}
$$

Claim. $C_{1}=0$. Otherwise let $t \rightarrow-\infty$ and we have the first term going to infinity. Meanwhile $C_{2} \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{3} \sin \left(\frac{\sqrt{3}}{2} t\right.$ is bounded by $\left|C_{2}\right|+\left|C_{3}\right|$ such that (2) cannot vanish for $t \rightarrow-\infty$. So C_{1} must be zero.
Now

$$
\begin{aligned}
& C_{2} e^{t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{3} e^{t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)=0 \\
\Longleftrightarrow & C_{2} \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{3} \sin \left(\frac{\sqrt{3}}{2} t\right)=0 .
\end{aligned}
$$

Substituting $t=0$ above yields C_{2}, from which follows

$$
C_{3} \sin \left(\frac{\sqrt{3}}{2} t\right)=0 \quad \text { for all } t
$$

This immediately suggests that $C_{3}=0$. Q.E.D
Remark. Alternatively for (b), to show the linear independency one can also use Wronskian.
4 Step 1. Find the fundamental solution of $y^{\prime \prime}+4 y=0$.

$$
\begin{aligned}
& r^{2}+4=0 \longrightarrow r_{1,2}= \pm 2 i \\
& y_{1}=\cos 2 t, y_{2}=\sin 2 t \longrightarrow y_{\text {homog }}=C_{1} \cos 2 t+C_{2} \sin 2 t
\end{aligned}
$$

Setp 2. Find a particular solution to $y^{\prime \prime}+4 y=t^{2}+3 e^{t} \quad(*)$.
The term $f(t)$ on the right hand side of the ODE suggests that

$$
y_{p}=\left(c_{0}+c_{1} t+c_{2} t^{2}\right)+C e^{t}
$$

Plug in this expression of y_{p} into the $\operatorname{ODE}(*)$ we can get four linear algebraic equations which are easy to solve and so we determine these constants.
Step 3. Finally we can apply the I.C. $\quad y(0)=0, y^{\prime}(0)=2$ to $y=y_{h}+y_{p}$ to determine C_{1}, C_{2}. [Solution] for Step 1 and 2.

$$
\begin{aligned}
& y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t) \\
& f(t)=t^{2}+3 e^{t} \longrightarrow t^{2}, t, 1, e^{t} \\
& y_{p}(t)=A+B t+C t^{2}+D e^{t} \\
& y_{p}(t)=-1 / 8+(1 / 4) t^{2}+(3 / 5) e^{t} \\
& y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)-1 / 8+(1 / 4) t^{2}+(3 / 5) e^{t}
\end{aligned}
$$

5 We use undetermined coefficients to find the general solution to the equation

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}-2 y=8 \sin 2 t \tag{3}
\end{equation*}
$$

Step 1. Solve $y^{\prime \prime}+y^{\prime}-2 y=0$ (homogeneous equation first).
The characteristic equation reads

$$
\begin{aligned}
& \quad r^{2}+r-2=0 \\
& \quad(r-1)(r+2)=0 \longrightarrow r_{1}=1, r_{2}=-2 \\
& \therefore \text { fundamental set } S=\left\{e^{t}, e^{-2 t}\right\} \\
& \\
& y_{h}(t)=C_{1} e^{t}+C_{2} e^{-2 t}
\end{aligned}
$$

Step 2. Find a particular solution y_{p}. Since the right hand side has the form $\sin 2 t$, the solution $y_{p}=A \cos 2 t+B \sin 2 t$. Substituting this expression into (3) yields a system of two linear equation for A and B.
Step 3. Finally the general solutions are given by $y(t)=y_{h}(t)+y_{p}(t)$.
6 Write the equation as $x^{\prime}-x \sin t=2 t e^{-c o s t}$ Then $p(t)=-\sin t$, and so $\mu=e^{\int p(t)}=e^{\cos t}$
7 Solve the Cauchy-Euler equation

$$
x^{2} \frac{d^{2} u}{d x^{2}}+7 x \frac{d u}{d x}-7 u=0
$$

Step 1. Change of variable $x=e^{t} \rightarrow u(x)=u\left(e^{t}\right):=u(t)$, with $t=\ln x, x>0$. With this substitution the general C-E equation $a x^{2} u^{\prime \prime}(x)+b x u^{\prime}(x)+c u(x)=0$ is converted to

$$
a u^{\prime \prime}(t)+(b-a) u^{\prime}(t)+c u(t)=0
$$

For our problem $a=1, b=7, c=-7$ thus we have

$$
u^{\prime \prime}(t)+6 u^{\prime}(t)-7 u(t)=0
$$

The characteristic equation is $r^{2}-6 r-7=0$, or, $(r+1)(r-7)=0 \longrightarrow r_{1}=-1, r_{2}=7$. This yields the fundamental set $\left\{e^{-t}, e^{7 t}\right\}$. Backsubstituting $t=\ln x$ gives us

$$
S=\left\{x^{-1}, x^{7}\right\}
$$

Hence the general solutions are given by $u(x)=\frac{C_{1}}{x}+C_{2} x^{7}$.
8 Let $x(t)=u_{1} f_{1}+u_{2} f_{2}$, where f_{1}, f_{2} are fundamental solutions of $x^{\prime \prime}+x=0$. Then $u_{1}^{\prime}(t)=-g(t) f_{2} / W, u_{2}^{\prime}(t)=g(t) f_{1} / W$, where $g=\csc t=1 / \sin t$ and $W=W\left(f_{1}, f_{2}\right)$ is the Wronskian of f_{1}, f_{2}.

9 Let $w=y^{1-n}, n=2$. Then $y=w^{-1}, d y / d x=-\frac{1}{w^{2}} \frac{d w}{d x}$. Substituting these into the Bernoulli equation yields

$$
\begin{equation*}
\frac{d w}{d x}-\frac{1}{x} w=x \tag{4}
\end{equation*}
$$

This is a first-order linear ODE for $w=w(x)$. The integrating factor $\mu=e^{\int P}=e^{\int(-1 / x)} d x=$ $1 / x$. Multiplying $1 / x$ on both sides of (4) yields

$$
\begin{aligned}
& \left(\frac{1}{x} w\right)^{\prime}=1 \\
& \frac{1}{x} w=x+C \\
& w=x^{2}+C x \longrightarrow y(x)=\frac{1}{x^{2}+C x}
\end{aligned}
$$

10 The Existence and Uniqueness Theorem for first-order linear ODE

$$
y^{\prime}+b(x) y=f(x),
$$

with initial value condition $y\left(x_{0}\right)=y_{0} \quad$ (I.C.) says that if $b(x)$ and $f(x)$ are both continuous on the same open interval (a, b) containing x_{0}, then there exists a unique solution $y=y(x)$ to this ODE defined in (a, b) that satisfies the I.C. Apply this E and U theorem to

$$
y^{\prime}+\frac{2 y}{x^{2}-9}=\frac{x}{x^{2}-9}, y(4)=-3 .
$$

We see that $b(x)=\frac{2}{x^{2}-9}$ and $f(x)=\frac{x}{x^{2}-9}$ are both continuous on $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$. But the only interval that contains $x_{0}=4$ is $(3, \infty)$. So the largest interval on which the solution is guarantee to exist is $(3, \infty)$. Q.E.D.

17 Let $\Phi(t)=\left(\begin{array}{ll}X_{1}(t) & X_{2}(t)\end{array}\right)$, where $X_{1}(t)=\binom{\cos t+2 \sin t}{\sin t}$ and $X_{2}(t)=\binom{2 \cos t-\sin t}{\cos t}$. Substituting X_{1} to the equation (system) on the left and on the right of

$$
X^{\prime}(t)=\left(\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right) X(t)
$$

we find that the left equals the right for all t. This verifies $X_{1}(t)$ is a solution. Similar result holds for $X_{2}(t)$.
In order to show Φ is a fundamental matrix, we also must show that the two columns $X_{1}(t), X_{2}(t)$ are linear independent. Indeed the Wronskian of Φ

$$
\operatorname{det}(\Phi(t))=3 e^{4 t} e^{3 t}-e^{3 t}\left(2 e^{4 t}\right)=e^{7 t}>0
$$

which proves the linear independency and so Φ is a fundamental matrix for the given system. 18 a) This works the same as in 17 by writing $\Phi(t)=\left(\begin{array}{ll}X_{1}(t) & X_{2}(t)\end{array}\right)$, where $X_{1}(t)=\binom{3 e^{4 t}}{2 e^{4 t}}$ and $X_{2}(t)=\binom{e^{3 t}}{e^{3 t}}$.
b) A general solution is given by

$$
X(t)=C_{1}\binom{3 e^{4 t}}{2 e^{4 t}}+C_{2}\binom{e^{3 t}}{e^{3 t}}=C_{1} e^{4 t}\binom{3}{2}+C_{2} e^{3 t}\binom{1}{1}
$$

c) Plug in the initial condition to determine the constants C_{i}. We have with $t=0$

$$
\binom{6}{-4}=C_{1}\binom{3}{2}+C_{2}\binom{1}{1}
$$

and therefore solve this linear system to get $C_{1}=10, C_{2}=-24$.
19 This system is in the case of repeated roots, and there is an example in Chap. 6 showing how to find the two linear independent solutions.
Step 1. Solve $|A-\lambda|=0$ to get $\lambda^{2}+4 \lambda+4=(\lambda+2)^{2}=0 \longrightarrow \lambda_{1}=\lambda_{2}=-2$
Step 2. Solve $(A-\lambda) \mathbf{v}=\mathbf{0}$:

$$
\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

Hence $\binom{v_{1}}{v_{2}}=\binom{1}{1}$
Step 3. Find two linear independent solutions $\Phi=\left(\Phi_{1}, \Phi_{2}\right) . \Phi_{1}(t)=e^{-2 t}\binom{1}{1}$ and $\Phi_{2}(t)=$ $t e^{-2 t}\binom{1}{1}+\mathbf{w}$ where \mathbf{w} solves $(A-\lambda) \mathbf{w}=\mathbf{v}$
Step 4. Finally the solution of the given system is

$$
Y(t)=\Phi(t) \mathbf{C}=C_{1} \Phi_{1}(t)+C_{2} \Phi_{2}(t)
$$

21

$$
|A-\lambda|=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 0 \\
-6 & 5-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right)=-\lambda^{3}+6 \lambda^{2}-11 \lambda+6=-(\lambda-1)(\lambda-2)(\lambda-3)
$$

\therefore

$$
X(t)=\Phi(t) C=\left(\begin{array}{lll}
e^{t} \mathbf{v}_{1} & e^{2 t} \mathbf{v}_{2} & e^{3 t} \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

here $\mathbf{v}_{1}=(0,0,1)^{T}, \mathbf{v}_{2}=(1,2,1)^{T}$, and $\mathbf{v}_{3}=(1,3,0)^{T}$.
24

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
|A-\lambda|=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right)=\lambda^{2}-2 \lambda+2 \quad \lambda_{1,2}=1 \pm i
\end{gathered}
$$

Eigenvectors are resp. $\mathbf{v}_{1}=(1, i)^{T}, \mathbf{v}_{2}=(1,-i)^{T}$. By Theorem 6.5, if $A_{n \times n}$ has $\lambda_{1}=\alpha+i \beta$, $\lambda_{2}=\alpha-i \beta$ with resp. eigenvectors $\mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}, \mathbf{v}_{2}=\mathbf{a}-i \mathbf{b}$. Then two real $\mathbf{x}_{1}(t)=$ $e^{\alpha t}(\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t), \mathbf{x}_{\mathbf{2}}(t)=e^{\alpha t}(\mathbf{a} \sin \beta t+\mathbf{b} \cos \beta t)$. Hence here $n=2, \alpha=1=\beta, \mathbf{a}=(1,0)^{T}$, $\mathbf{b}=(0,1)^{T}$. We have

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}(t)=e^{t}\left(\binom{1}{0} \cos t-\binom{0}{1} \sin t\right) \\
& \mathbf{x}_{\mathbf{2}}(t)=e^{t}\left(\binom{1}{0} \sin t+\binom{0}{1} \cos t\right)
\end{aligned}
$$

$\left(x_{1}(t), x_{2}(t)\right)=(0,0)^{T}$ is an equilibrium solution. Since $\alpha>0$ (in the case of complex conjugate roots), the point $(0,0)$ in the phase-portrait plane is unstable spiral point (as $t \rightarrow \infty$)
27 (a) Substitute $y=t$ to both sides of

$$
t^{2} y^{\prime \prime}+t y^{\prime}-y=0
$$

to check if the equation holds. Do the same for $y=1 / t$.
(b) Substitute $y(t)=2 t^{2}$ to the inhomogeneous equation $\left(^{*}\right)$ to check if the equation holds. If so that will verify it is a solution.
(c) The general solution $y_{g e n}=y_{h}+y_{p}=C_{1} t+C_{2} / t+2 t^{2}$
(d) Plugging in the initial data at $t=1$ to $y_{\text {gen }}$ to determine the constants C_{i}.
(e) Divided by t^{2} on both sides of $(*)$, then the equation becomes

$$
y^{\prime \prime}+\frac{1}{t} y^{\prime}-\frac{1}{t^{2}} y=6
$$

Apply the E and U theorem, since the functions $p(t)=1 / t, q(t)=-1 / t$ and $f(t)=6$ are all continuous on $(0, \infty)$ and $(-\infty, 0)$, we obtain that the equation $\left(^{*}\right)$ is guaranteed to have a unique solution on either of these two intervals. Further, since the solution of $(* *) y(t)$ is required to satisfy the I.C. at $t=1$, we must conclude that the largest interval is $(0, \infty)$. This answer is consistent with (c) and (d). So the E and U theorem is sharp, in other words, in general we do not expect the interval of existence to be larger than where $p(t), q(t), f(t)$ are all continuous.

