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Applications

51. Vibration of a spring

Consider a steel spring attached to a support and hanging aoé:émﬁ._.
Within certain elastic limits the spring will obey Hooke’s law : if the spring is
stretched or compressed, its change in length will be Eowo&o.:& 8.90 force
exerted upon it and, when that force is removed, the spring SE.REB
to its original position with its length and other .@gm_om_ E.owoﬂ:om un-
changed. There s, therefore, associated with each spring a numerical constant,
the ratio of the force exerted to the displacement produced by that woﬂon.. Ifa
force of magnitude Q pounds (Ib) stretches the spring ¢ feet (ft), the relation

0 = ke 1)

defines the spring constant k in units of pounds per foot (Ib/ft). .
Let a body B weighing w 1b be attached to the lower wma of a spring

(Figure 13) and brought to the point of equilibrium where it can remain at

rest. Once the weight B is moved from the point of equilibrium E in Figure 14,
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the motion of B will be determined by a differential equation and associated
initial conditions.

Let t be time measured in seconds after some initial moment when the
motion begins. Let x, in feet, be distance measured positive downward (nega-
tive upward) from the point of equilibrium, as in Figure 14. We assume that
the motion of B takes place entirely in a vertical line, so the velocity and
acceleration are given by the first and second derivatives of x with respect to .

[-]s

FIGURE 13 FIGURE 14

In addition to the force proportional to displacement (Hooke’s law),
there will in general be a retarding force caused by resistance of the medium
in which the motion takes place or by friction. We are interested here only
in such retarding forces as can be well approximated by a term proportional
to the velocity because we restrict our study to problems involving linear
differential equations. Such a retarding force will contribute to the total
force acting on B a term bx'(t), in which b is a constant to be determined
experimentally for the medium in which the motion takes place. Some
common retarding forces, such as one proportional to the cube of the velocity,
lead to nonlinear differential equations.

The weight of the spring is usually negligible compared to the weight B,
so we use for the mass of our system the weight of B divided by g, the constant
acceleration of gravity. If no forces other than those described above act
upon the weight, the displacement x must satisfy the equation

w

mx=€ + bx'(t) + kx(t) = 0. (2)
Suppose that an additional vertical force, due to the motion of the support

or to presence of a magnetic field, and so on, is imposed upon the system.

The new, impressed force, will depend upon time and we may use F(¢) to

denote the acceleration that it alone would impart to the weight B. Then the
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impressed force is (w/g)F(t) and equation (2) is replaced by

Y@y + bx() + kx(t) = © F(0). 3)
g g

At time zero, let the weight be displaced by an amount x, from the equi-
librium point and let the weight be given an initial velocity v,. Either or
both of x, and v, may be zero in specific instances. The problem of deter-
mining the position of the weight at any time ¢t becomes that of solving the
initial value problem consisting of the differential equation

W&é + bx(t) + kx(t) = .M%Sv fort > 0, )
and the initial conditions
x(0) = x9,  x'(0) =v,. 4
It is convenient to rewrite equation (4) in the form
X"(t) + 2yx'(t) + B2x(t) = F(v), (6)
in which we have put
b k
Loy ZE_p
w w

We may choose f > 0 and we know y = 0. Note that y = 0 corresponds to a
negligible retarding force.

A number of special cases of the initial value problem contained in equa-
tions (5) and (6) will now be studied.

52. Undamped vibrations

If y = 0 in the problem of Section 51, the differential equation becomes
xX'(t) + B*x(1) = F(), (1)

a second-order linear equation with constant coefficients in which > = kg/w.
The complementary function associated with the homogeneous equation
x"(t) + B*x(t1) = 0 is

Xx. = ¢y 8in fit + ¢, cos fit,
and the general solution of equation (1) will be of the form
X = ¢, sin it + ¢, cos Bt + x,,, (2)

where X, is any particular solution of the nonhomogeneous equation.
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. We now look at a number of examples of the motion described by equa-
tion (2) for different functions F(t) in equation (1).

EXAMPLE (a): Solve the spring problem with no damping but with
F(t) = Asin wt, where f . The case f = w leads to resonance, which
will be discussed in the next section.

The differential equation of motion is

S\‘ 74 S\ -
=x"(t) + kx(t) = — A sin wt
g g

and may be written

, X(t) + B2x(t) = Asin o, 3)
with the introduction of 82 = kg/w. We shall assume initial conditions

x(0) = x,, X'(0) = v,. 4
A particular solution of equation (3) will be of the form
x, = Esin wt,
and we may obtain E by direct substitution into equation (3). We have
—Ew? sin wt + B2E sin ot = A sin wt,

an equation that is satisfied for all ¢ only if we choose

A

The general solution of (3) now becomes

m“

A .
—— sin wt

\wm — W GV

x(t) = ¢y sin ft + ¢, cos ft +

with derivative

Aw
5 COS .

x'(t) = c feos ft — c,fsin ft + ———
p*—w

The initial conditions (4) now require

Aw
‘XOHQN N.HHQ CO ”QH@LI:Q

and force us to choose

Vo Aw
Cy — and €y = Xgq.

BB - oD
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From (5) it follows at once that

Uy . Aw . A .

—sin ft + xq cos fit — ——————=sin fit + —————sinwt. (6
poin Pt o cos ft = gy ysin Bt s ©)
The x of (6) has two parts. The first two terms represent the natural simple
harmonic component of the motion, a motion that would be present if 4
were zero. The last two terms in (6) are caused by the presence of the external
force (w/g)A sin wt.

x(t) =

EXAMPLE (b): A spring is such that it would be stretched 6 inches (in.)
by a 12-1b weight. Let the weight be attached to the spring and pulled down
4in. below the equilibrium point. If the weight is started with an upward
velocity of 2 ft/sec, describe the motion. No damping or impressed force is
present. ,

We know that the acceleration of gravity enters our work in the expression
for the mass. We wish to use the value g = 32 feet per second per second
(ft/sec?) and we must use consistent units, so we put all lengths into feet.

First we determine the spring constant k from the fact that the 12-Ib
weight stretches the spring 6 in., 5 ft. Thus 12 = 1k so that k = 24 1b/ft.

The differential equation of the motion is therefore

L2x"(1) + 24x(t) = 0. (7

At time zero the weight is 4 in. (3 ft) below the equilibrium @oBﬁ so x(0) = 1.
The initial velocity is negative (upward), so x'(0) = —2. Thus our problem is
that of solving

x"(t) + 64x(t) = 0; x(0) = %, x'(0) = —2. (8)
The general solution of equation (8) is
x(t) = ¢, sin 8¢ + ¢, cos 8t,
from which
x'(t) = 8¢, cos 8t — 8¢, sin 8¢.
The initial conditions now require that

=c, and ~2 = 8¢y,

G

so that finally
x(t) = —Lsin 8t + L cos 8t. ©9)

A detailed study of the motion is straightforward once (9) has been ob-
tained. The amplitude of the motion is

VO @ =1
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that is, the weight oscillates between points 5 in. above and below E. The
period is 7 sec.

53. Resonance

In Example (a) of the previous section we postponed the study of the
special case, f = w. In that case, the differential equation to be solved is
xX"(t) + B*x(t) = Asin Bt, (1

where we had let 8% = kg/w.

The complementary function associated with the homogeneous equation
x"(t) + B*x(t) = 0 will be the same as it was before, but the previous par-
ticular solution x, will not exist because ff = w.

The method of undetermined coefficients may be applied here to seek a
particular solution of the form

x, = Ptsin fit + Qt cos fit, (2)

where P and Q are constants to be determined. Direct substitution of the
x, of (2) into equation (1) yields

2Pf cos ft — 20 sin ft = A sin ft,
an equation that can be satisfied for all ¢ only if P =0 and Q = — 4/28. Thus

— At
X, = 2 cos fit, (3)
and the general solution of (1) is
. At v
x(t) = ¢, sin ft + ¢, cos ft — ;Nw cos fit, 4)
from which we obtain
/ . At A
xX'(t) = ¢, f cos it — ¢,fsin fit + — sin ft — Mmoom pt.
The initial conditions x(0) = x, and x'(0) = v, now force us to take
v A
€y = X and ¢, = NM + B
The final solution may now be written
vo . 4 .
x(t) = xo cos ft + —sin ft + —=(sin it — pt cos fr). %)

p 2p



162 Applications [Ch. 10

That (5) satisfies the initial value problem is readily verified.

In the solution (5) the terms proportional to cos ft and sin ft are bounded,
but the term with St cos ft can be made as large as we wish by proper choice
of t. This building up of large amplitudes in the vibration is called resonance.

Exercises

1. A spring is such that a 5-1b weight stretches it 6 in. The 5-1b weight is attached, the
spring reaches equilibrium, then the weight is pulled down 3 in. below the equilib-
rium point and started off with an upward velocity of 6 ft/sec. Find an equation
giving the position of the weight at all subsequent times.

ANS. = 4(cos 8t — 3 sin 81).
2. Aspring is stretched 1.5 in. by a 2-Ib weight. Let the weight be pushed up 3 in. above
E and then released. Describe the motion. ANS.© x = —1cos 16t

3. For the spring and weight of exercise 2, let the weight be pulled down 4 in. below E
and given a downward initial velocity of 8 ft/sec. Describe the motion.
ANS. x = L cos 16t + %sin 16t.

Show that the answer to exercise 3 can be written x = 0.60sin (16t + ¢) where
¢ = arctan2.
A spring is such that a 4-1b weight stretches it 6 in. An impressed force £ cos 8¢ is
acting on the spring. If the 4-1b weight is started from the equilibrium point with
an imparted upward velocity of 4 ft/sec, determine the position of the weight as a
function of time. ANS. x = Xt — 2)sin 8z
A spring is such that it is stretched 61in. by a 12-1b weight. The 12-1b weight is
pulled down 3in. below the equilibrium point and then released. If there is an
impressed force of magnitude 9sin 4¢1b, describe the motion. Assume that the
impressed force acts downward for very small z.

ANS. x = +cos 8t — 1sin 8¢ + 1sin4t.
Show that the answer to exercise 6 can be written

e

o

&

b

= 4./2cos (8t + m/4) + Lsin4t.

8. A spring is such that a 2-Ib weight stretches it % ft. An impressed force % sin 8¢ is
acting upon the spring. If the 2-1b weight is released from a point 3 in. below the
equilibrium point, determine the equation of motion.

ANS. x = 31 — t)cos 8t + 2 sin 8¢ (ft).

9. For the motion of exercise 8, find the first four times at which stops occur and find

the position at each stop. ANS. t = n/8, n/4, 1, 3n/8 (sec)

and x = —0.15, +0.05, +0.03, +0.04 (ft), respectively.

Determine the approximate position to be expected, if nothing such as breakage

interferes, at the time of the 65th stop, when ¢ = 8z (sec), in exercise 8.

ANS. x = —0.0(ft).

11. A springissuch thata 16-1b weight stretches it 1.5 in. The weight is pulled down toa

point 4 in. below the equilibrium point and given an initial downward velocity of
4 ft/sec. An impressed force of 360 cos4tlb is applied. Find the position and
velocity of the weight at time t = n/8 sec.

ANS. At = /8 (sec), x = —§(ft), v = —8 ({t/sec).

10
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12. A spring is stretched 3 in. by a 5-Ib weight. Let the weight be started from E with

an upward velocity of 12 ft/sec. Describe the motion.  ANS. x = - 1.06sin 11.3¢

13. For the spring and weight of exercise 12, let the weight be pulled down 4 in. below
E and then given an upward velocity of 8 ft/sec. Describe the motion.

ANS. x =033 cos11.3¢t — 0.71 sin 11.3¢.

14. Find the amplitude of the motion in exercise 13. ANS.  0.78 ft.

15. A 20-1b weight stretches a certain spring 10 in. Let the spring first be compressed

4in., and then the 20-1b weight attached and given an initial downward velocity

of 8 ft/sec. Find how far the weight would drop. ANS. 35in.

16. Aspringissuch thatan 8-1b weight would stretch it 6 in. Let a 4-1b weight be attached
to the spring, which is then pushed up 2 in. above its equilibrium point and released.
Describe the motion. ANS. x = —1cos 113t

17. If the 4-1b weight of exercise 16 starts at the same point, 2 in. above E, but with an
upward velocity of 15 ft/sec, when will the weight reach its lowest point?

ANS. At t = approximately 0.4 sec.

18.

A spring is such that it is stretched 4 in. by a 10-1b weight. Suppose the 10-1b weight
to be pulled down 5 in. below E and then given a downward velocity of 15 ft/sec.
Describe the motion.
ANS. x = 042 cos 9.8t + 1.53 sin 9.8¢
= 1.59 cos (9.8 — AEV where ¢ = arc tan 3.64.
19. A spring is such that it is stretched 4 in. by an 8-Ib weight. Suppose the weight to be
pulled down 6 in. below E and then given an upward velocity of 8 ft/sec. Describe
the motion. ANS.  x = 0.50 cos 9.8t — 0.82 sin 9.8
Show that the answer to exercise 19 can be written x = 0.96 cos (9.8t + ¢) where
¢ = arc tan 1.64.
A spring is such that a 4 1b weight stretches it 6 in. The 4-1b weight is attached to the
vertical spring and reaches its equilibrium point. The weight is then (+ = 0) drawn
downward 3 in. and released. There is a simple harmonic exterior force equal to
sin 8¢ impressed upon the whole system. Find the time for each of the first four stops
following ¢ = 0. Put the stops in chronological order.
ANS. = n/8,%,1/4,3n/8 (sec).
22. A spring is stretched 1.5in. by a 4-1b weight. Let the weight be pulled down 3 in.
below equilibrium and released. If there is an impressed force 8 sin 161 acting upon
the spring, describe the motion. ANS. x =41 — 8f)cos 16t + L sin 16¢.
23. For the motion of exercise 22, find the first four times at which stops occur and
find the position at each stop. ANS. ¢ =%, /16, 7/8, 37/16 (sec) and
x = +0.11, +0.14, —0.54, +0.93 (ft), respectively.

20

h

21

54. Damped vibrations

?Eomodmﬂm:msmmamﬁanmvaozoggmoomozmréosommoom?onﬁom
with :

X"(6) + 29x'(t) + BPx(1) = F(1);  x(0) = xo, X'(0) = vg, (1)
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in which 2y = bg/w and $* = kg/w, B > 0. The auxiliary equation m> +
2ym + B* = 0 has roots —y + /\ 2 — B? and we see that the nature of the
complementary function depends upon whether f >y, f =y, or < 7.

If B>y, f2 —y* >0, so let us put

B = @)
Then the general solution of (1) will be
x(t) = e (¢, cos Ot + ¢, sin 5t) + W4 (1), 3)

in which ,(z) is any particular solution of equation (1). The presence of the
function ¢, called a damping factor, will cause the natural part of the
solution, that is, the part independent of the external force (w/g)F(t), to
approach zero as t — .

If in (1) we have B = v, the two roots of the auxiliary equation are equal
and the general solution becomes

x(f) = e7 ey + eat) + (1), )

in which ¥,(¢) is a particular solution of (1). Again the natural component
has the damping factor e™ " in it.
If in (1) we have B < y and y* — % > 0, then we can set

2 — B =06% >0 5)

Since ¢ < 7y, the two roots of the auxiliary equation are both real and
negative, and we have

x(t) = ¢, 7T e TV 4 ya(0). (6)

Again Y4(t) is a particular solution of (1), and we see that the damping
factor e causes the natural component of (6) to approach zero as t — co.
Suppose for the moment that we have F(t) = 0, so the natural component
of the motion is all that is under consideration. If # > vy, equation (3) holds
and the motion is a damped oscillatory one. If f = 7, equation (4) holds and
the motion is not oscillatory; it is called critically damped motion. If f§ < y,
(6) holds and the motion is said to be overdamped; the parameter y is larger
than it needs to be to remove the oscillations. Figure 15 shows a representative
graph of each type of motion mentioned in this paragraph, a damped oscil-
latory motion, a critically damped motion, and an overdamped motion.

EXAMPLE: Solve the problem of Example (b), Section 52, with an added
damping force of magnitude 0.6 |v]. Such a damping force can be realized by
immersing the weight B in a thick liquid.

The initial value problem to be solved is

1237 + 0.6x'(1) + 24x(t) = 0;  x(0) = %, x(0) = —2. 7
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Critically damped

FIGURE 15

The auxiliary equation of (7) may be written
m* + 1.6m + 64 = 0,

mw %\wmmao: that has roots —0.8 + . /63.361. Therefore, the general solution
o is

x(t) = e8¢, cos 8.0t + Cy sin 8.01)
and

x'(t) = e”*¥[(—8¢; — 0.8¢,)sin 8.0r + (8cy — 0.8¢,) cos 8.0t].
The initial conditions in (7) now give us

Wi

= ¢ and —2 =8¢, — 0.8¢,,
so that ¢; = 0.33 and ¢, = —0.22.
Therefore the desired solution is
x(t) = exp(—0.8¢)(0.33 cos 8.0t — 0.22 sin 8.01), (8)

a portion of its graph being shown in F igure 16.

FIGURE 16
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Exercises

1.

5.

6.

7.

A certain straight-line motion is determined by the differential equation

2
MIHW+§\&!M+ 169x =0
and the conditions that when t = 0, x = 0, and v = 8 {t/sec.
(a) Find the value of y that leads to critical damping, determine x in terms of
¢, and draw the graph for 0 £ ¢ £ 0.2. ANS. y = 13(1/sec), x = 8te” '
{b) Use y = 12. Find x in terms of ¢ and draw the graph.
ANS. x = 1.6e” 1%'sin 5t
(c) Usey = 14. Find x in terms of ¢ and draw the graph.
ANS. x = 0.77(e” 58 — 71924,
A spring is such that a 2-1b weight stretches it L ft. An impressed force ; sin 8¢ and
a damping force of magnitude |v] are both acting on the spring. The weight starts
1 ft below the equilibrium point with an imparted upward velocity of 3 ft/sec. Find
a formula for the position of the weight at time 1.
ANS. x =5 e %3 — 8i) — 357 cos 8L
A spring is such that a 4-1b weight stretches it 0.64 ft. The 4-1b weight is pushed up
1 ft above the point of equilibrium and then started with a downward velocity of
5 ft/sec. The motion takes place in a medium which furnishes a damping force of
magnitude 3{v| at all times. Find the equation describing the position of the weight
at time ¢. ANS. x =31e (2sin7t — cos Tt).
A spring is such that a 4-1b weight stretches it 0.32 ft. The weight is attached to the
spring and moves in a medium which furnishes a damping force of magnitude
31y|. The weight is drawn down  ft below the equilibrium point and given an initial
upward velocity of 4 ft/sec. Find the position of the weight thereafter.
ANS. x = e (4 cos 8t — sin 81).
" A spring is such that a 4-1b weight stretches the spring 0.4 ft. The 4-1b weight is
attached to the spring (suspended from a fixed support) and the system is allowed
to reach equilibrium. Then the weight is started from equilibrium position with an
imparted upward velocity of 2 ft/sec. Assume that the motion takes place in a
medium that furnishes a retarding force of magnitude numerically equal to the
speed, in feet per second, of the moving weight. Determine the position of the weight
as a function of time. ANS. x = —te *sin8t
A spring is stretched 6 in. by a 3-1b weight. The 3-1b weight is attached to the spring
and then started from equilibrium with an imparted upward velocity of 12 ft/sec.
Air resistance furnishes a retarding force equal in magnitude to 0.03|v]. Find the
equation of motion. ANS. x = —1.5e7 %15 gin 8r.

A spring is such that a 2-1b weight stretches it 6 in. There is a damping force present,
with magnitude the same as the magnitude of the velocity. An impressed force
(2 sin 8t) is acting on the spring. If, at t = 0, the weight is released from a point
3 in. below the equilibrium point, find its position for ¢ > 0.

ANS. x = (5 + 4t)e™® — Lcos 8t

1

8. A spring is stretched 10 in. by a 4-Ib weight. The weight is started 6 in. below the

equilibrium point with an upward velocity of 8 ft/sec. Ifa resisting medium furnishes
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9.

10.

11.

12

13.

14.

15.

16.

a retarding force of magnitude 4o, describe the motion.
. . ANS. x = e [0.50 cos 6.1t — 1.23 sin 6.1¢].
.ﬂOn exercise 8, find the times of the first three stops and the position {to the nearest
inch) of the weight at each stop. ANS. t; = 03sec,x; = —12in.;t, = 0.8 sec
o . X, = +6in.;ty = 13sec, x; = —4in.
A spring is wq.ﬁorna 4in. by a 2-1b weight. The 2-1b weight is started from the
a@E:v.EEz point with a downward velocity of 12 ft/sec. If air resistance furnishes a
retarding force of magnitude 0.02 of the velocity, describe the motion.
. ANS. x = 1.22¢7 016 5in 9 8¢,
.w or exercise 10, find how long it takes the damping factor to drop to one-tenth its
initial value. ANS. 144 sec
For exercise 10, find the position of the weight at: (a) the first stop; (b) the second
stop. . . ANS. (@) x = 1.2ft;(b) x = —1.1ft.
Let the H,uo:ou of exercise 8, page 162, be retarded by a damping force of magnitude
0.6/v|. Find the equation of motion.
ANS. x = 030e %% cos 641 + 0.22 e~ ** sin 6.4t — 0.05 cos 8t (ft).
Show that whenever ¢ > 1 (sec), the solution of exercise 13 can be replaced (to the
nearest 0.01 {t) by x = —0.05 cos 8t¢.
Let :.5 motion of m.xmmommn 8, page 162, be retarded by a damping force of magnitude
{vl. Find the equation of motion and also determine itsform (to the nearest 0.01 ft)
for t > 1 (sec).
OANS. x= 35(8t + 1) e™8 — F5cos 8¢ (ft); for t > 1, x = —=5cos 8z.
Let the motion of exercise 8, page 162, be retarded by a damping force of magnitude

" 3Jv]. Find the equation of motion.

17.

18.

19.

20.

21.

22.

ANS. x = 030e " — 003724 — 0.02 cos 8¢.

Alter exercise 6, page 162, by inserting a damping force of magnitude one-half that
of the velocity and then determine x.

.>Zm.. x = exp (—%)(0.30 cos 8.0t — 0.22 sin 8.0t) — 0.05 cos 4¢ + 0.49 sin 4t.

A spring is stretched 6 in. by a 41b weight. Let the weight be pulled down 6 in.

U&oé, equilibrium and given an initial upward velocity of 7 ft/sec. Assuming a

damping force twice the magnitude of the velocity, describe the motion and sketch

the mﬂm.ﬁr at intervals of 0.05secfor 0 < ¢ <03 (sec).  ANs. x = 1e %41 — &)

An object weighing w Ib is dropped from a height & ft above the earth. At time

t (sec) after the object is dropped, let its distance from the starting point be x (ft),

measured mom#?n downward. Assuming air resistance to be negligible, show that
x must satisfy the equation

w d?x
22w

g dr?
as long as x < h. Find x. ANS. x = ig?
. . . . . . ’ 2 X
ﬁon the weight of exercise 19 be given an initial velocity v,. Let v be the velocity at
time t. Determine v and x. ANS. 0 =gt + vy, % = $gt? + vyt
> ot-

From the results in exercise 20, find a relation that does not contain ¢ explicitly.

. . , y ANS. 07 = v} + 2gx.
If air resistance furnishes an additional force proportional to the velocity in the
motion studied in exercises 19 and 20, show that the equation of motion becomes

L b =w. (A)
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Solve equation (A) given the oo:m:_o:w. w mn owxnuaw,_wwmr ea.u Nc%m .c%(wo M:M Ww\mswj.
23. To compare the results of exercises 20 and 22 when a= bg/wis mEmF zmw »..wm vwdmw

series for e~ in the answer for exercise 22 and discard all terms M:MouS:m a® fo

n=3. ANS. x = 3gt? + vot — £at*(3v, + gt) + 35a*t3(dvy + m%n.
24. The equation of motion of the vertical fall oﬁ. a man with a @wmwomucmmw”wwowm

roughly approximated by equation (A) ﬁm exercise NN. Suppose a w.: o

from a great height and attains a velocity of 20 Q.Eam per hour (mp e o

time. Determine the implied coefficient b of wncm:o: (A). ANS. 6.1 (Ib)(sec)/ft.
25. A particle is moving along the x-axis according to the law

d*x _dx

If the particle started at x = O with an :&mm_ velocity of 12 ft/sec Mv EN .FMM, MMMMM

mine: (a) x in terms of ¢ ; (b) the Ezom. at which stops occur ; and (c) the ra _,o €

the numerical values of x at successive stops.

(a) x = —3e sindt.
ANs. (b) t =023 + gnm,n=0,1,2,3,....
(c) 0.095.

55. The simple pendulum

i d so it can swing freely in a
A rod of length C ft is suspended by one en
vertical plane. Let a weight B (the bob) of w 1.0 .co attached to the free wwrm
of the rod, and let the weight of the rod be negligible compared to the weight
f the bob. . .
° Let 0 (radians) be the angular displacement ?o.B the vertical, as shown in
Figure 17, of the rod at time ¢ (sec). The tangential component of the force

FIGURE 17
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w (Ib) is w sin 0 and it tends to decrease 0. Then, neglecting the weight of the
rod and using S = C6 as a measure of arc length from the vertical position,
we may conclude that

w d?S

Since S = C# and C is constant, (1) becomes

d*0 .
mﬁfn+|mm5mﬂo. (2)

The solution of equation (2) is not elementary; it involves an elliptic in-
tegral. If 0 is small, however, sin § and 0 are nearly equal and (2) is closely
approximated by the much simpler equation
d*6
a =0 p=f )
dt

The solution of (3) with pertinent initial conditions gives usable results

whenever those conditions are such that 0 remains small, say 0] < 0.3
(radians).

Exercises

L. A clock has a 6-in. pendulum. The clock ticks once for each time that the pendulum
completes a swing, returning to its original position. How many times does the
clock tick in 30 sec? ANS. 38 times.

2. A 6-in. pendulum is released from rest at an angle one-tenth of a radian from the
vertical. Using g = 32 (ft/sec?), describe the motion.

ANS. 6 = 0.1 cos 8¢ (radians).
3. For the pendulum of exercise 2, find the maximum angular speed and its first time of

occurrence. ANS. 0.8 (radians/sec) at 0.2 sec.

4. A 6-in. pendulum is started with a velocity of 1 radian/sec, toward the vertical,
from a position one-tenth radian from the vertical. Describe the motion.

ANS. 0 = {5c0s 8¢ — § sin 8¢ (radians).

5. For exercise 4, find to the nearest degree the maximum angular displacement from
the vertical.

ANS.  9°,
6. Interpret as a pendulum problem and solve:
g ., g do
&’HNIThQIOQ lfmw cﬁuoﬂmuOuQHQOw HI&MHEO.

ANS. 6 = 0,cos Bt + =1 w, sin ft (radians),
7. Find the maximum angular displacement from the vertical for the pendulum of
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exercise 6. ANS. O = (0F + B 202)12,



