
Reading & Tutorial 2 (M 5339)

Reading and practice questions on text §1.3-§1.6.

(1) (Derivation of heat equation) Denote by u = u(t, x) the temperature. The amount
of heat (in calories, say) contained in a region Ω is given by

H(t) =

∫∫∫
Ω
aρudx

where a is the specific heat of the material and ρ the density. The rate of change
in heat is H ′(t) =

∫∫∫
Ω aρutdx.

Fourier’s law says that heat flows from hot to cold regions proportionately to
the temperature gradient. The heat energy on Ω is conserved when transferring
through the boundary.

d

dt
H(t) =

∫∫∫
∂Ω
κ(∇u · n)dS

here κ is the heat conductivity that is a proportionality factor. We obtain by
divergence theorem ∫∫∫

Ω
∇ · Fdx =

∫
∂
F · ndS

(see [Strauss, 1.3,#9], or Appendix 3)∫∫∫
Ω
aρutdx =

∫∫∫
Ω
κdiv(∇u)dx

⇒aρut = κdiv(∇u) (heat equation)

since Ω is arbitrary in R3.

(2) (Derivation of a Transport equation, [Strauss 1.3]).
The theory of PDE arises in physics and the study of this subject has motivated

the mathematical development in analysis (multidimensional calculus, variational
calculus, Fourier analysis, potential theory, dynamical systems) and geometry, as
well as mathematical physics. These were developed from the second half of the
eighteenth century, until the 1930s, from D’Alembert, Euler, and Lagrange to
Poincare, Hilbert and von Neumann. PDE finds its applications in from hydro-
dynamics, celestial mechanics, continuum mechanics, elasticity theory, acoustics,
thermodynamics, electricity, magnetism, optics, aerodynamics to atomic and sub-
atomic theory to string theory. Physicists who are among the well-known to have
profound influence in the areas are Newton, Maxwell, Bohr, Einstein, Heisenberg,
Schrödinger, Dirac, Schwarzschild, Feynman, Boltzmann et al.

Following [Strauss] we give a derivation of

ut + cux = 0(1)

http://en.wikipedia.org/wiki/Mathematical_physics


as follows. Let us say, we have a water fluid flowing at a constant speed c along
a pipe of constant shape cross section (in the x-direction). Denote u = u(t, x) the
concentration (grams per centimer) at time t for the substance (say a pollutant) in
the water.

On any given interval [a, b] the amount of pollutant is given by∫ b

a
u(t, x)dx =

∫ b+ch

a+ch
u(t+ h, x)dx

where the second in the equation means or reflects the fact that at time t+ ∆t =
t+ h, the amount of molecules of the pollutant stay the same along the flow.

Now take derivative in b to get u(t, b) = u(t + h, b + ch). Then take derivative
in h to obtain (1)
‡This equation tells that the rate of change of the concentration is proportional

to the gradient.
(3) (Vibrating string: Derivation of a wave equation). Consider a flexible elastic ho-

mogenous string or thread of length L, that undergoes small transverse vibrations.
Denote by u(t, x) the displacement from equilibrium at t and x. Assume the ten-
sion is directed in the tangential direction along the string (due perfect flexibility)
and assume that T = T (t, x), the magnitude of the tension, is constant due to the
homogeneity. Consider any portion [a, x] of density ρ. By Newton’s law, we have
two equations in the longitudinal and the transverse components

T
1√

1 + u2
x

|xa = 0

T
ux√

1 + u2
x

|xa =

∫ x

a
ρuttdx

here the left hand side means the difference of the tension at a and x respectively
at time t.

We neglect the small terms u and ux to obtain

Tux(t, x)− Tux(t, a) =

∫ x

a
ρuttdx

Take derivative in x to obtain (2)

Tuxx = ρutt

utt = c2uxx(2)

where c =
√
T/ρ indicates the wave speed. There are variations/modificatons of

the wave equation subject to transverse elastic force, air resistance or external force.
(4) Laplace equation ∆u = 0 (u called harmonic functions) describes the sate of sta-

tionary waves and diffusions where physical state u does not change with time. e.g
the temperature of the object eventually attains its equilibrium state.



(5) Hydrogen atom. Think that we have an electron moving around a proton. Let ~
denote the Planck’s constant. Let m and e be the mass and charge of the electron.
Then the motion of the particle is given by a wave function u(t, x, y, z) satisfying
the Schrödingier equation

i~ut = − ~2

2m
∆u+ V u(3)

where V = −Ze2/r is the potential with Z the atomic number for the case where
the atom has a single electron only (e.g. a helium ion). In the hydrogen atom
Z = 1.

Schrödingier theory postulates that The wave function u stands for a state of
the particle (electron) where if R is any region in the space, then the probability
of finding the particle in R at time t is given by∫∫∫

R
|u|2dxdydz

so that physically |u|2 means the probability density.
The structure of the whole chemistry (atoms and molecules) thus can be ex-

plained by (3). Schrödinger interpretation

u 7→ xu refers to the position vector

u 7→ −i~∇u refers to the momentum vector

so that

〈zu | u〉 =

∫∫∫
z|u|2dxdydz is expected z coordinate of the position of electron

〈−i~uz | u〉 =

∫∫∫
−i~uzūdxdydz is expected z coordinate of the momentum of electron

(6) (N -body system) For N particles

i~
∂u

∂t
= −

N∑
i=1

~2

2mi
∆xiu+ V (x1, . . . ,xN )u(4)

In [Struass] it says “Except for the hydrogen and helium atoms (the latter having
two electrons), the mathematical analysis is impossible to carry out completely and
cannot be calculated even with the help of the modern computer.” However, using
various approximations (including theoretical and numerical ones) “many of the
facts about more complicated atoms and the chemical binding of molecules can be
understood.”
‡The update is that recent years there have been remarkable progress on certain

solutions to the N-body system by people in analysis and PDE. (the result along
with the method are not simple though).



Ex. [Strauss, 1.3, #1] Derive the equation of the string motion in a medium in
which the resistance is proportional to the velocity.

Ex. [Strauss, 1.3, #6] Consider the heat flow in a long circular cylinder where

the temperature depends only on t and on the distance r =
√
x2 + y2 to the axis

of the cylinder. From the three-dimensional heat equation derive the equation
ut = κ(urr + 1

rur).
Ex. [Strauss, 1.3, #9] Homework exercise! (aug.25,14)
Ex. [1.3,#10] If f(x) is continuous and |f(x)| ≤ (1 + |x|3)−1 for all x, then∫∫∫

div fdx = 0

[hint: divergence theorem]
Ex. If curlu = 0 for all x in R3, then there exists a function φ so that

v = ∇φ.
(Recall that in ODE or Calc III, such field u is conservative ⇐⇒ line integrals
from A to B are path-independent!)

Ex. [Strauss 1.5] Well-posedness problems
A PDE in a domain together with a set of IC or BC (or other auxiliary conditions)

is said to be well-posed if the following fundamental properties are satisfied
a.: Existence
b.: Uniqueness
c.: Stability. The unique solution u depends in a stable manner on the data

of the problem. Namely, if the data change slightly, then it requires that
the corresponding solution changes slightly also. This is indeed a very big
question since there are many ways to measure the “continuous dependence of
u on certain data”.

Ex. [Strauss 1.5, #1]
Ex. [Strauss 1.5, #3]
Ex. [Strauss 1.5, #5]
Ex. [Strauss 1.5, #6]

(7) (Section 1.6, Types of 2nd-order equations)
Ex. [Strauss 1.6, #1]
Ex. [Strauss 1.6, #2]
Ex. [Strauss 1.6, #6]

(8) (optional reading**) Numerical methods: (a) Finite difference

[**Chapters 8, 13, 14, uxx ≈ u(x+h,y)−2u(x,y)+u(x−h,y)
h2 ]

(b) FEM solver of PDE in 2D and 3D

http://www.freefem.org/ff++/

