
Reading & Tutorial 3 (M 5339)

Reading and practice questions §2.5, §9.4-5, §10.7, §13.4-5.

(1) ([Strauss 2.5, waves vs. diffusions]) The wave equation solution satisfies the Huy-
gens’ principle, has finite speed propagation less or equal to c; the singularities
transported along characteristics with speed c. the (initial data) gets transported.

The diffusion equation solution has infinite speed propagation; the singularities
lost immediately and the data gets lost gradually. This can be observed by the
exercises in Sections 2.1 to 2.4.

Ex. [Strauss 2.5, #1] Show that there is no maximum principle for the wave
equation.

Ex. [Strauss 2.5, #2] Consider a traveling wave u(t, x) = g(x − ξt), g being a
function of one variable.
(a) If it is a solution of the wave equation 2u = 0, 2 = ∂2t − c2∆x, show that the

speed must be ξ = ±c (except in the trivial case where g a linear function).
(b) If u is a solution of the diffusion equation ut = κ∆u, find g and show that ξ

can be arbitrary real number.
Ex. [Hydrogen atom; Strauss,Section 9.4,9.5] Separate variable to find solutions

in L2(R3) of
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Writing u = TX, X = X(r) radial
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where λ represents the energy of the bound state u(t, x). In 1913, Bohr observed
that energy levels of electron in hydrogen atom occur only at values that are related
to squares of integers. Via Laguerre equation we find that this has to be the case
where
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Ex. [9.5,#1] Verify the formulas for the first four solutions of the hydrogen
atoms. (instructor change 3 to 4)

Ex. Let X = X(r), r > 0. For λ > 0, why would you expect
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not to have a solution in L2? In other words, no positive eigenvalues?



Ex. [Strauss 2.5, #3] (a) Consider ut = κ∆u, κ = 1
2 . Show that the pseudo-

conformal transform
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obeys the “backward” equation vt = −κ∆v for t > 0.
(b) [Lecture Notes from the Instructor] Show the same property for

ut = κ∆u+ λup, λ ∈ R, p ≥ 1.
Ex. [Schrödinger equation] Consider iut = −1

2∆u + λ|u|p−1u. Show that the
pseudo-conformal transform

v(t, x) =
1√
t
eix

2/2tu(
1

t
,
x

t
)

obeys the equation ivt = −1
2∆v + λ|v|p−1v for all t.

(2) (relation between wave and diffusion equations) Suppose u solves 2u = 0 in R and
u has bounded second derivatives. Then (a)

v(t, x) =
c√

4πkt

∫
R
e−c

2s2/4ktu(s, x)ds

solves the diffusion equation.
(b) We have limt→0 v(t, x) = u(0, x).
(c)** In virtue of Laplace transform one might be able to derive a formula that

maps solutions of heat equation to that of a wave equation. cf. [Strauss, 2.5, #4]
and [Lecture Notes]

[Clue: (i) write v =
∫
RH(s, t)u(s, x)ds; H solves the diffusion equation with

constant k/c2 for t > 0.
(ii) Note that H(s, t) is essentially the source function of the diffusion equation

with spatial variable s. ]

(3) (optional) Let H := L2(Rn) be a Hilbert space, that is a vector space with inner
product 〈·, ·〉 satisfying
(a) 〈u, u〉 ≥ 0
(b) 〈αu+ βv,w〉 = α〈u,w〉+ β〈v, w〉
(c) 〈v, u〉 = 〈u, v〉

These simple and basic properties imply that we can endow a norm ‖u‖ :=
√
〈u, u〉

on H. Also, we have the Cauchy-Schwarz inequality

|〈u, v〉| ≤ ‖u‖ ‖v‖ .

In Quantum mechanics only when an operator A acting in H is selfadjoint, then
it is observable. Only when A and B commute, they are observable simultaneously.
The Schrd̈ingier representation are:

x 7→ position operator

− i∇ 7→ momentum operator



Prove the uncertainty principle

‖(x− x0)u‖2 ‖(ξ − ξ0)û‖2 ≥
π2
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Remark The UC is the reason for the global in time existence of NLS, cf. [Luis
Vega et al].

(4) (angular momentum in quantum mechanics) Ex. [10.7, #1]
Ex. [10.7, #2]
Ex. [10.7, #3]
Ex. [10.7, #5]

(5) (scattering theory vs. soliton or bound sate) If V (r) = cr−1 is the Coulomb po-
tential as with the hydrogen atom, then HV := −∆ + V has discrete spectrum
{−1/n2}.

If V has decay at infinity, then there may exist continuous spectrum. Ex. [13.4,
#1]

Ex. [13.4, #2]

(6) [equations of elementary particles] Klein-Gordon equation and Yang-Mills equa-
tions. Read Section 13.5

(7) [KdV part.I] (Airy’s equation) ut + uxxx = 0 Verify that u(t, x) = ei(xy+ty
3) = eiφ

is a solution. Here note that φ(t, x, ξ) = ξ(x + tξ2) so propagation speed depends
on the frequency of the wave.

Definition If plane waves of different frequencies travel with different speeds,
the PDE is called dispersive. (cf. Evans notes)

(8) [Korteweg de Vries] Consider

ut + 6uux + uxxx = 0 R+ × R

symmetry: u a solution ⇒ u(−t,−x) also a solution.
Seek a traveling wave solution ansatz u = v(x − σt). Let η = x − σt then the

symmetry above implies v is even in η.

− σv′ + 6vv′ + v
′′′

= 0

⇒− σv′ + 3(v2)′ + v
′′′

= 0

⇒− σv + 3v2 + v
′′

= C (∗∗)

To find solution assuming v, v′, v′′ → 0 as η → ±∞. these conditions implies C = 0.
We write equation (**) of v as a system of ODE{

v′ = w

w′ = σv − 3v2

Two fixed points (0, 0), (0, σ/3).



Assume σ > 0, linearizing about (0, 0), eigenvalues/eigenfunctions are
√
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Linearizing about (0, σ/3), eigenvalues are ±
√
−σ. There are some details on

the homoclinic orbit method with phase plane portrait Evans’ notes.
The KdV is completely integrable. Fortunately we can explicitly solve for this

homoclinic orbit.
Multiply by v′
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⇒v′ = ±
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here again the vanishing condition on v, v′ implies C2 = 0.
We obtain from the phase plane with v(η) > 0

⇒v′ = ±v
√
σσ − 2v

Since we seek solution v of even, and v’ of odd, solve
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Notice that on each half line, the function has an inverse. η = g(v) We obtain on
the left branch
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similarly on the right branch ηr(v) =
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Note vmax = σ/2
We are ready to find the inverse v : R→ (0, vmax] using simple asymptotics

v(η) =
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2
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Finally

u(t, x) =
σ

2
sech2(

√
σ/2(x− σt))

Remark The higher the soliton the faster it moves because σ = speed = 2vmax.
Evans Nov.26 gave a similar solution for traveling waves for the reaction diffusion model

ut = uxx + f(u) R+ × R
Read the details therein.


