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Read each question carefully. Avoid simple mistakes. You must show your work in
order to get full credits.

(1) Solve the following using characteristics method or substitution method

(a) 2uy − ux = u

(b) ux + 5uy = 6x

(2) Ex. Let Ω be the first quadrant in R2. Solve using characteristics method

xuy − yux = u,

u(0, x) = f(x)

(3) [Evans Oct.29] Here is a general theorem on solving 1st-order PDE using charac-
teristics.

Theorem. Let u ∈ C2(Ω) solve the nonlinear first order PDE

F (Du, u, x) = 0 x ∈ Ω

Suppose x solves x′(s) = DpF (p(s), z(s), x(s)). where p(s) = Du(x(s)), and z(s) =
u(x(s)). Then

p′(s) = −DxF (p(s), z(s), x(s))−DzF (p(s), z(s), x(s))p(s)

z′(s) = DpF (p(s), z(s), x(s)) · p(s).

(4) Ex. F (p(s), z(s), x(s)) = b(x) ·Du(x) + c(x)u(x) = 0 see [Evans, Oct29]

(5) Ex. [Evans, Oct] Use energy method to prove strong maximum principle for the
heat equation.

(6) In Review Test 3, we have the uncertainty principle (UC). Prove a sharper version:∫
Rn

|u|2 ≤ 2

n
‖∇u‖2 ‖xu‖2 .

(7) (Bi-harmoinc functions) Solve ∆∆u = 0 in Rd, d = 2, 3.
(8) Apply Fourier series to solve periodic heat equation on the interval T = [0, 2π]

ut = kuxx x ∈ T
u(0, x) = f(x)

(9) Solve the Schrödinger equation with periodic data on the torus T

iut = −1

2
uxx x ∈ T

u(0, x) = f(x)



(10) (Sine-Gordon equation) In 1939 Frenkel and Kontorova introduced a problem aris-
ing in solid state physics to model the relationship between dislocation dynamics
and plastic deformation of a crystal (Frenkel & Kontorova, 1939). From this study,
an equation describing dislocation motion is

uxx − utt = sinu

here u(t, x) is atomic displacement in the x-direction and the sin function represents
periodicity of the crystal lattice. A traveling wave corresponding to the propagation
of a dislocation is given by u(t, x) = g(x− ξt) = 4 tanh(exp( x−ξt√

1−ξ2
)).

(11) There are G′/G-method that deals with soliton waves for more general class of
PDE, see [Lecture Notes]

(12) [NLS system, coupled BEC]
Deng-Shan Wang, Yu-Ren Shi, Kwok Wing Chow, Zhao-Xian Yu, Xiang-Gui Li,

Matter-wave solitons in a spin-1 Bose-Einstein condensate with time-modulated
external potential and scattering lengths. The European Physical Journal D, No-
vember 2013, 67:242, Date: 22 Nov 2013

Abstract.
In this paper, we present many matter-wave solitons in a system of three com-

ponent Gross-Pitaevskii equation arising from the context of spinor Bose-Einstein
condensates with time-modulated external potential and scattering lengths. The
three component Gross-Pitaevskii equation with time-dependent parameters is first
transformed into a three coupled nonlinear Schrdinger equation, then the exact soli-
ton solutions of the three coupled nonlinear Schrdinger equation are given explicitly.
Finally, the dynamics of the matter-wave solitons in the F = 1 spinor Bose-Einstein
condensates is examined by specially choosing the frequency of the external poten-
tial. It is shown that when the frequency of the external potential is constant,
there exist different kinds of matter-wave solitons as the atomic s-wave scattering
lengths are varied about time, such as solitons with shape changing interactions,
two-soliton bound states, squeezed matter-wave solitons, single bright and dark
solitons. When the frequency of the external potential is time-modulated, there
also exist various matter-wave solitons in the F = 1 spinor Bose-Einstein conden-
sates, and we show that the time evolutions of the matter-wave solitons are sharply
changed by the time-dependent trap frequency and nonlinear coefficients.

(13) T. Kanna, , R. Babu Mareeswaran, K. Sakkaravarthi, Non-autonomous bright mat-
ter wave solitons in spinor Bose-Einstein condensates. Physics Letters A Volume
378, Issue 3, 10 January 2014, Pages 158–170.

Abstract We investigate the dynamics of bright matter wave solitons in spin-1
Bose-Einstein condensates with time modulated nonlinearities. We obtain soli-
ton solutions of an integrable autonomous three-coupled Gross-Pitaevskii (3-GP)
equations using Hirota’s method involving a non-standard bilinearization. The
similarity transformations are developed to construct the soliton solutions of non-
autonomous 3-GP system. The non-autonomous solitons admit different density



profiles. An interesting phenomenon of soliton compression is identified for kink-like
nonlinearity coefficient with Hermite-Gaussian-like potential strength. Our study
shows that these non-autonomous solitons undergo non-trivial collisions involving
condensate switching.

Keywords Spinor Bose-Einstein condensate; Three-coupled GrossPitaevskii equa-
tion; Similarity transformation; Hirota’s bilinearization method; Bright soliton so-
lution; Soliton interaction

Richard S. Tasgal and Y. B. Band, Sound waves and modulational instabilities
in spinor Bose-Einstein condensates. arXiv.cond-mat.quant-gas, aug20, 2014

(14) Liu, W. M., Chui, S. T., Integrable models in Bose-Einstein condensates. (English
summary) Recent developments in integrable systems and Riemann-Hilbert prob-
lems (Birmingham, AL, 2000), 59–90, Contemp. Math., 326, Amer. Math. Soc.,
Providence, RI, 2003.

Summary: ”The theory of Bose-Einstein condensation of dilute gases in magnetic
traps and optical lattices is reviewed from the point of view of the integrability
of the equation of motion. The mean field theory–the time-dependent nonlinear
Schrdinger equation (or the Gross-Pitaevskii equation)–provides a framework to un-
derstand the main features of the Bose-Einstein condensates and the role of the in-
teraction between atoms. Using the inverse scattering method, we obtain the exact
solutions of the one-dimensional single or coupled nonlinear Schrodinger equations,
and explain the coherent properties, the collective excitations and the striation
pattern of Bose-Einstein condensates reported in recent experiments. Using the
periodic instanton method, we investigate the quantum tunneling of Bose-Einstein
condensates in optical lattices under gravity in the ‘Wannier-Stark localization’
regime and ‘Landau-Zener tunneling’ regime. Our results agree with experimental
data.”
‡exact bring and dark soliton solutions for CNLS; nonlinear excitations of two-

component BEC. Consider BEC with weakly interaction for the atomic gases, where
soliton and vortices are featured as macroscopically excited Bose condensed states
that are key phenomenon for superfluid. Bright and dark solitons in BEC corre-
spond to the attractive and repulsive interactions (s-wave scattering length a < 0
or a > 0 reps.)

The motion or dynamics of 2-BEC is described by wave functions (ψ,ϕ) of CNLS

i~ψt = − ~2

2m
ψxx +

4π~2

m
(a11|ψ|2 + a12|φ|2)ψ(1)

i~φt = − ~2

2m
φxx +

4π~2

m
(a22|φ|2 + a12|ψ|2)φ(2)

1

1aij are s-wave scattering lengths. If i = j, aii is for the length between same species. If otherwise i 6= j,
aij is for different component

http://arxiv.org/pdf/1408.4594.pdf
http://arxiv.org/pdf/1408.4594.pdf


Consider the case of interest when aij = a and where we can find the “Lax pair”
in order to apply the inverse scattering method. Liu and Chui showed that

A. If a < 0, the exact bright soliton of BEC with attractive interaction the one
soliton (1-soliton)

ψ(t, x) =2η1ε1 sech

(
2η1
√

4πa[x− x0 + 2tξ1
~
m

√
4πa]

)
× exp

(
−i[2ξ1

√
4πa(x− x0) + 8π

~
m
a(ξ21 − η21)t]

)
φ(t, x) =2η1ε2 sech

(
2η1
√

4πa[x− x0 + 2tξ1
~
m

√
4πa]

)
× exp

(
−i[2ξ1

√
4πa(x− x0) + 8π

~
m
a(ξ21 − η21)t])

)
here x0 is the center position of the 1-soliton, the velocity is v1 = 2ξ1~/m

√
4πa,

ξ, η are real constants and in the construction of φ, ψ, λ is called the eigenvalue of
this bright soliton.

Thus the density for the BEC are

|ψ(t, x)|2 =4η21ε
2
1 sech2

(
2η1
√

4πa[x− x0 + 2tξ1
~
m

√
4πa]

)
|φ(t, x)|2 =2η21ε

2
2 sech2

(
2η1
√

4πa[x− x0 + 2tξ1
~
m

√
4πa]

)

B. If a > 0 the exact dark soliton of BEC with repulsive interaction: for the
Manakov case a11 = a12 = a22, using Lax pair and inverse scattering transform the
one-soliton are obtained

ψ(t, x) = ε1
(ξ1 + iη1)

2 + e2γ1

1 + e2γ1

φ(t, x) = ε2
(ξ1 + iη1)

2 + e2γ1

1 + e2γ1

where γ1 = η1
√

4πa[x − x0 + v1t], v1 = 2ξ1~/m
√

4πa, in the IST λ called the
eigenvalue of this dark soliton, the constants ξ1, η1 ∈ R satisfying ξ21 + η21 = 1. The
density distribution of the BEC are then

|ψ(t, x)|2 = |ε1|2(1− η21 sech2(γ1))

|φ(t, x)|2 = |ε2|2(1− η21 sech2(γ1))

here η21 is called the darkness of the soliton.
Exact periodic solution for striation pattern of 2-component BEC Let

ψ, φ be the macroscopic wave functions of the different BEC species. Let aij denote
the 1-dimensional reduced scattering lengths between the atoms for the same species



(i = j) and for different species (i 6= j). For cigar-shaped traps one can reduce
the 3d to 1d problem where z is the axial direction of the external magnetic field.
From experiment, the width of the magnetic domain is much smaller than the size
of condensates. Hence the free CNLS without trap may capture the main feature
of the experimental observations.

Consider the CNLS describing the BEC in cigar-shaped traps, where the Bose
condensates are strongly confined along the z-axis and we can treat the system as
a quasi-1d system. Liu and Chui found the Lax pair for the CNLS, then derive the
exact solutions applying inverse scattering method.

i~ψt = − ~2

2m
ψzz +

4π~2

m
(a11|ψ|2 + a12|φ|2)ψ(3)

i~φt = − ~2

2m
φzz +

4π~2

m
(a22|φ|2 + a12|ψ|2)φ(4)

One class of solutions exhibit a periodic structure in the density difference of the
2-component. Their result makes explicit dependence of the period of the density
modulation on the energy of the initial state, which may be tested experimentally.
It also suggests that there is a range of compositions at which the mixture exhibits
the metastable intermediate time periodic state and that this range is different for
the 87Rb and the 23Na systems.

In [Liu and Chui] first find a “Lax pair” whose compatibility conditions reproduce
(4), (3). Then transfer these two equations or system into solving a set of inverse
scattering equations that determine the 3 by 3 scattering matrix from z → −∞ to
z →∞. Physically one looks at the discrete spectrum.

IST allows to reduce the inverse scattering equations to a set of linear inhomo-
geneous algebraic equations. Constructing the Lax pair L = Q1,M = λQ1 + i

2Q2

where

Q1 =

−iλ φ1 φ2
φ1 iλ 0
φ2 0 iλ


Q2 =

|φ1|2 + |φ2|2 ∂φ1/∂τ ∂φ2/∂τ
∂φ∗1/∂τ −|φ1|2 −φ∗1φ2
∂φ∗2/∂τ −φ1φ∗2 −|φ2|2





2 where τ = 4πa~t/m, r =
√

4πax and λ = ξ + iη denotes the spectral parameter.
In light of the IST, we verify that the solution matrix

Ψ(λ, r → −∞) =

e−iλr 0 0
0 eiλr 0
0 0 eiλτ

(5)

Ψ(λ, r →∞) =

e−iλr 0 0
0 eiλr 0
0 0 eiλτ

ST(6)

here S = (cij)33 the matrix of scattering coefficients cij and S the unitary scattering
matrix satisfying S+S = I for real λ.

For a11 = a22 = a12 as in Manakov Liu-Chui found the Lax pair above:

Φr = LΦ

Φτ = MΦ

and, let J = (+,−,−) be the diagonal matrix, then the x-evolution of S is given
by

Sr = iλ2[J, S].

[Liu-Chui] obtain the exact periodic solutions

φ1(t, z) =c1 sn(
√

8πa12 α(z −
√

8πa12 ~βt/m), k)

exp(i
√

8πa12 β(z −
√

2πa12 ~ω1t/mβ))

φ2(t, z) =c2 cn(
√

8πa12 α(z −
√

8πa12 ~βt/m), k)

exp(i
√

8πa12 β(z −
√

2πa12 ~ω2t/mβ))

here sn, cn are the sine-amplitude and the cosine-amplitude Jacobian elliptic func-
tions with modulus k; ωi are the corresponding frequencies determined by the I.C.
of the system.

(15) date back in 2003 Kanna and Lakshmanan already has exact solitons of CNLS of
N-systems: it is in the folder soliton-CNLS03.pdf

also, in a companion paper 2001 [arXiv nlin.SI] Kanna and Lakshmanan “Exact
soliton solutions, shape changing collisions and partially coherent soliton in CNLS”
the bright one-soliton and two-soliton of the 3-CNLS was studied

iqjz + qjtt + 2µ(|q1|2 + |q2|2 + |q3|2)qj = 0 j = 1, 2, 3

to show that

(q1, q2, q3)
T =

eη1

1 + eη1+η
∗
1+R

(α
(1)
1 , α

(2)
1 , α

(3)
1 )T

=
k1Re

iη1I

cosh(η1R +R/2)
(A1, A2, A3)

T

2one of the variables should be ∂r



here η1 = k1(t + ik1z), Aj = α
(j)
1 /∆, ∆ = (µ ∼3

j=1 |α
(j)
1 |2)1/2; α

(j)
1 , k1 are four

arbitrary complex parameters. Moreover k1RAj is the amplitude of the jth mode
and 2k1I the soliton velocity.

(16) Guo-Quan Zhou and Nian-Ning Huang An N -soliton solution to the DNLS equation
based on revised inverse scattering transform. Journal of Physics A: Mathematical
and Theoretical Volume 40 Number 45. J. Phys. A: Math. Theor. 40 13607.
doi:10.1088/1751-8113/40/45/008 Published 23 October 2007.

Abstract. Based on a revised version of inverse scattering transform for the de-
rivative nonlinear Schrodinger (DNLS) equation with vanishing boundary condition
(VBC), the explicit N-soliton solution has been derived by some algebra techniques
of some special matrices and determinants, especially the BinetCauchy formula.
The one- and two-soliton solutions have been given as the illustration of the gen-
eral formula of the N-soliton solution. Moreover, the asymptotic behaviors of the
N-soliton solution have been discussed.

(17) D Zhang, T Yan, H Cai, Explicit multisoliton solution to the coupled nonlin-
ear Schrodinger equations. Wuhan University Journal of Natural Sciences, 2013
- Springer.

Abstract. Based on the inverse scattering transform for the coupled nonlinear
Schrodinger (NLS) equations with vanishing boundary condition (VBC), the mul-
tisoliton solution has been derived by some determinant techniques of some special
matrices and determinants ...

Qing Ding, The NLS- equation and its SL(2, R) structure. Journal of Physics
A: Mathematical and General Volume 33 Number 34

Qing Ding 2000 J. Phys. A: Math. Gen. 33 L325. doi:10.1088/0305-4470/33/34/101
Abstract. The relationship of the group SL(2, R) and the NLS-equation is pre-

sented. As a consequence, the SL(2, R) gauge equivalence between the NLS- and
the M − HF model is proved, which provides a new example in geometrically
explaining dynamical properties of soliton equations by the SL(2, R) structure.

(18) [dNLS] Consider the derivative NLS for b ≥ 0

iut = −uxx − i|u|2ux − b|u|4u (t, x) ∈ R1+1

which came from nonlinear optics, plasma physics, etc. cf. [M. Ohta, arXiv.math.AP,
14]

Seek a traveling wave solution ansatz u = eiλtφω(x − σt), ω = (λ, σ) ∈ Ω :=
{(λ, σ) ∈ R2 : σ2 < 4λ}.

φω(x) = ηω(x) exp(
iσx

2
− i

4

∫ x

−∞
|ηω(y)|2dy)

ηω(x) = (
2(4λ− σ2)

−σ +
√
σ2 + γ(4λ− σ2) cosh(

√
4λ− σ2x)

)1/2



where γ = 1 + 16b/3. The φω(x) and ηω solve the elliptic (indecent of t)

− uxx + σiux − i|u|2ux − b|u|4u = −λu x ∈ R

− ηxx +
σ

2
|u|2u− 3γ

16
|u|4u = −4λ− σ2

4
η x ∈ R

The dNLS is generated by the Hamiltionian

iut =
δH

δu

that is the gradient of energy is parallel to the rate of change, or “velocity” by
a complex factor. Here H : H1(R) → R, where H1 is endowed with real inner
product 〈u, v〉H1 = 〈u, v〉2 + 〈ux, vx〉2 and in L2(R)

〈u, v〉 := <
∫
uv̄dx.

H[u] =
1

2
‖ux‖22 −

1

4
〈i|u|2ux, u〉 −

b

6
‖u‖66

∂H

∂u
= −uxx − i|u|2ux − b|u|4u in H−1

(19) Show that the following are conserved
(a) M [u] = 1

2

∫
|u|2

(b) p[u] = 1
2〈iux, u〉2

(c) E[u] = 1
2 ‖ux‖

2
2 −

1
4〈i|u|

2ux, u〉6 − b
6 ‖u‖

6
6

Remark One can compute the exact value of the mass, momentum and energy
for the soliton waves φω. see [Ohta14]

(20) [Evans Nov.26] gives a similar solution for traveling waves for the reaction diffusion
model

ut = uxx + f(u) R+ × R

**Read the details therein. **See also [Strauss, 14.4] on bifurcation theory.

References.
Juan Belmonte-Beitia, Vı́ctor M. Pérez-Garćıa and Pedro J. Torres, “ Solitary waves for

linearly coupled nonlinear Schrodinger equations with inhomogeneous coefficients”.
Abstract Motivated by the study of matter waves in Bose-Einstein condensates and

coupled nonlinear optical systems, we study a system of two coupled nonlinear Schrodinger
equations with inhomogeneous parameters, including a linear coupling. For that system we
prove the existence of two different kinds of homoclinic solutions to the origin describing
solitary waves of physical relevance. We use a Krasnoselskii fixed point theorem together
with a suitable compactness criterion. Key words: Nonlinear Schrodinger systems, solitary
waves, fixed point theorems in cones.

http://www.ugr.es/~ecuadif/files/Belmonte_etal.pdf
http://www.ugr.es/~ecuadif/files/Belmonte_etal.pdf


To solve for the soliton there is applied a fixed point theorem referred in this article
which is due to Krasnoselskii. 3

Theorem 0.1. Let X be a B space, and let P ⊂ X be a cone in X. Assume Ω1,Ω2 are
open subsets in X with 0 ∈ Ω1,Ω1 ⊂ Ω2 and let T : P ∩ (Ω2 \ Ω1) → P be a completely
continuous operator s.t. one of the following is satisfied

(1) ‖Tu‖ ≤ ‖u‖ if u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ if u ∈ P ∩ ∂Ω2

(2) ‖Tu‖ ≥ ‖u‖ if u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ if u ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω2 \ Ω1).

A. Jungel and RADA-MARIA Weishaupl, BLOW-UP IN TWO-COMPONENT NON-
LINEAR Schrodinger SYSTEMS WITH AN EXTERNAL DRIVEN FIELD.

Abstract. A system of two nonlinear Schrodnger equations in up to three space di-
mensions is analyzed. The equations are coupled through cubic mean-field terms and a
linear term which models an external driven field described by the Rabi frequency. The
intraspecific mean-field expressions may be non-cubic. The system models, for instance,
two components of a Bose-Einstein condensate in a harmonic trap. Sufficient conditions
on the various model parameters for global-in-time existence of strong solutions are given.
Furthermore, the finite-time blow-up of solutions is proved under suitable conditions on the
parameters and in the presence of at least one focusing nonlinearity. Numerical simulations
in one and two space dimensional equations verify and complement the theoretical results.
It turns out that the Rabi frequency of the driven field may be used to control the mass
transport and hence to influence the blow-up behavior of the system.

see 05-p11weishaeupl.pdf
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X. Carvajal,M Panthee, and M. Scialom, On the critical KdV equation with time-
oscillating nonlinearity. Differential Integral Equations Volume 24, Number 5/6 (2011),
541–567.

Abstract. We investigate the initial-value problem (IVP) associated with the equation

ut + ∂3xu+ g(ωt)∂x(u5) = 0,

where g is a periodic function. We prove that, for given initial data φ ∈ H1(R), as |ω| → ∞,
the solution uω converges to the solution U of the initial-value problem associated with

Ut + ∂3xU +m(g)∂x(U5) = 0,

with the same initial data, where m(g) is the average of the periodic function g. Moreover,
if the solution U is global and satisfies ‖U‖L5

xL
10
t
<∞, then we prove that the solution uω

is also global provided |ω| is sufficiently large.
X Carvajal, P Gamboa, M Panthee, A system of coupled Schrödinger equations with

time-oscillating nonlinearity. International Journal of Mathematics 23 (11). World Scien-
tific Publishing Company

abstr. This paper is concerned with the initial value problem (IVP) associated to the
coupled system of supercritical nonlinear Schrodinger equations

iut + ∆xu+ θ1(ωt)(|u|2p + β|u|p−1|v|p+1)u = 0

ivt + ∆xv + θ2(ωt)(|v|2p + β|v|p−1|v|p+1)u = 0

where θ1 and θ2 are periodic functions, which has applications in many physical problems,
especially in nonlinear optics. We prove that, for given initial data φ, ψ ∈ H1(Rn), as
|ω| → ∞, the solution (uω, vω) of the above IVP converges to the solution (U, V ) of the
IVP associated to

iUt + ∆xU + I(θ1)(|U |2p + β|U |p−1|V |p+1)U = 0

iVt + ∆xV + I(θ2)(|v|2p + β|V |p−1|U |p+1)V = 0

with the same initial data, where I(g) is the average of the periodic function g. Moreover,
if the solution (U, V ) is global and bounded then we prove that the solution (uω, vω) is also
global provided |ω| � 1.

Ref. J. Chen and B. Guo, Blow-up profile to the solutions of two-coupled Schrödingier
equation with harmonic potential. J. Math. Phys. 50 (2009), 023505.

abs. The model of the following two-coupled Schrodinger equations

iut +
1

2
∆u = (g11|u|2p + g|u|p−1|v|p+1)u, (t, x) ∈ R+ ×RN ,(7)

ivt +
1

2
∆v = (g|u|p+1|v|p−1 + g22|v|2p)v(8)

is proposed in the study of the Bose-Einstein condensates [Mitchell, et al., “Self-traping
of partially spatially incoherent light,” Phys. Rev. Lett.77, 490 (1996)]. We prove that
for suitable initial data and p the solution blows up exactly like δ function. As a by-
product, we prove that similar phenomenon occurs for the critical two-coupled Schrodinger

http://www.worldscientific.com/doi/abs/10.1142/S0129167X12501194
http://www.worldscientific.com/doi/abs/10.1142/S0129167X12501194


equations with harmonic potential [Perez-Garcia, V. M. and Beitia, T. B., Sybiotic solitons
in heteronuclear multicomponent Bose-Einstein condensates, Phys. Rev. A72, 033620
(2005)],

L. Fanelli and E. Montefusco, On the blow-up threshold for weakly coupled nonlinear
Schrodinger equations. J. Phys. A: Math. Theor. 40, 14139 (2007),

V. V. Konotop and P. Pacciani, Collapse of solutions of the nonlinear Schrodinger equa-
tion with a time dependent nonlinearity: application to the Bose-Einstein condensates.
Phys. Rev. Lett. 94, 240–405 (2005)

M. Lakshmanan, T. Kanna and R. Radhakrishnan, Collapse of solutions of the nonlinear
Schrodinger equation with a time dependent nonlinearity: application to the Bose-Einstein
condensates. Rep. Math. Phys. 46, 143–156, (2000).

F. Linares and G. Ponce , Introduction to Nonlinear Dispersive Equations, Universitex
( Springer , New York , 2009 ).

L. Ma, X. Song and L. Zhao, On global rough solutions to a non-linear Schrodinger
system, Glasgow Math. J. 51, 499–511, (2009).

L. Ma and L. Zhao, Sharp thresholds of blow-up and global existence for the coupled
nonlinear Schrodinger equations. J. Math. Phys. 49, 062103 (2008).

abs. In this paper, we establish two new types of invariant sets for the coupled nonlin-
ear Schrodinger system in the Euclidean n-space Rn and derive two sharp thresholds of
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J. M. Gonçalves Ribeiro, Instability symmetric stationary states for some nonlinear

Schrodinger equations with an external magnetic field, Ann. Inst. H. Poincaré, Phys.
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