
Math 5530 Review Test I

Read each question carefully. Avoid making simple mistakes. Use the back of the page if neces-
sary. You must show your work in order to receive full credits.

(1) A differential equation is an equation involving derivatives or differentials. Determine
the type of the following equations by indicating the order, ODE/PDE, linear/nonlinear.
If linear, tell if it is homogeneous or inhomogeneous.

a (y′′)2 − 6x = (y′)3

b y′ = a cosx+b sin y
a sinx+b cos y (a, b are constants)

c d2y
dt2

+ 13dydt + 36y = 4et

d ( ∂2

∂x2
+ ∂2

∂y2
)U = 0

e y = xy′ − y′2
f (x2 − x)dy = (2x− 1)ydx
g y′ = x2 + y2

h ut = ∆u+ f(t, x) (heat equation)
i ut + uxxx + 6uux = 0
j ut = ∂

∂xF (u, ux)
k ut + uux = 0 (Burgers equation)
l ∇ · ( ∇u√

1+|∇u|2
) = 0 (minimal surface equation)

(2) Find the solution to the initial value problem

x′ = x sin t+ 2te−cost, x(0) = 1

(3) Determine if the equation is exact and solve it if it is.

(2x sin y + 3x2y)dx+ (x3 + x2 cos y + y2)dy = 0

(4) The ODE −ydx+xdy = 0 is not exact. Multiply by 1/x2 will make it exact. some other
integrating factors are 1/y2, 1/(xy), 1/(x2 + y2). In general, given Mdx + Ndy = 0, by
Theorem 1.4 and 1.5 in Section 1.4 (E. Kreyszig):

(a) If R(x) := 1
N (My −Nx) depends on x only, then the integrating factor

µ(x) = e
∫
Rdx

(b) If R∗(x) := 1
M (Nx −My) depends on y only, then the integrating factor

µ(y) = e
∫
R∗dy

Solve (x2 + y2)dx− 2xydy = 0 [Hint: #5 in [Kreyszig Section 1.4] ]

(5) Solve the equations. Determine if the differential equations are homogeneous. If so,
determine its degree.
(a)

ydx+ (y − x)dy = 0

(b) xy′ = y + 3x4 cos2(y/x), y(1) = 0. [Clue: substitution y = xu, [Kreyszig, Section
1.3, # 17]]
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(6) * Find a general solution of
dy

dx
= 6

y

x
− xy2

(7) Find the solutions of y(4) + 8y
′′

+ 16y = 0 (answer: y = c1 sin 2t+ c2 cos 2t+ c3t sin 2t+
c4t cos 2t)

(8) * Find the orthogonal trajectories of the family of curves
(a) xy = c
(b) x2 + y2 = cx
(c) y2 = cx2 − 2y

(9) Let D = d/dx. Solve the Cauchy-Euler equation (x2D2 +xD− 4)y = x3 [Clue I: change
of variable x = et; clue II: let y = xk]

(10) The operator L := a0(x)D2 + a1(x)D + a2(x) is exact ⇐⇒ a′′0 − a′1 + a2 = 0, in which
case

Ly = (a0D
2 + a1D + a2)y = D(a0D + a1 − a′0)y

Find the solution of (1− x2)y′′ − 3xy′ − y = 1.

(11) Figure 1 (Page 4) is the direction field for the differential equation y′ = y(y − 1)(y + 1).
(a) Draw on the direction field the solutions of the differential equation satisfying each

of the following initial values.
(i) y(0) = 0.0
(ii) y(0) = 0.5
(iii) y(0) = −1.5

(b) For the solution y(t) with initial condition y(0) = 0.5, what is limt→∞ y(t) and
limt→−∞ y(t)?

(c) For the solution y(t) with initial condition y(0) = −1.5, what is limt→∞ y(t) and
limt→−∞ y(t)?

(12) Figure 2 (Page 4) is the direction field for the differential equation y′ = y − t.
(a) Draw on the direction field the solutions of the differential equation satisfying each

of the following initial values.
(i) y(0) = 0.0
(ii) y(0) = 1.0
(iii) y(0) = −1.0
(iv) y(0) = 2.0

(b) Are there any constant solutions y = c to this differential equation? If so, show
them on the direction field.

(c) Are there any straight line solutions y = mt+b? If so indicate them on the direction
field.

(d) There is a number c such that all solutions with initial condition y(0) > c satisfy
limt→∞ =∞ and all solutions with initial condition y(0) < c satisfy limt→∞ = −∞.
Find this number c by inspecting the direction field.
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Figure 1. Direction Field for Exercise 11
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–3

–2

–1

0

1

2

3

y(x)

–3 –2 –1 1 2 3

x



4

(13) Solve each of the following initial value problems. You must show your work to tell if
they are unique?
(a) y′ = ±y−3, y(1) = −1.

(b) y′ = |y|2/3, y(t0) = y0

(c) y′ +
3

t
y = 7t3, y(1) = −1.

(14) [# 5, Kreyszig, Section 2.4] What are the frequencies of vibration of a body of mass
m = 5 kg

(a) on a spring of modulus k1 = 20nt/m
(b) on a spring of modulus k2 = 45nt/m
(c) on the two springs in parallel?

(15) [# 7, Kreyszig, Section 2.4] Find the frequency of oscillation of a pendulum of mass m
and of length L, neglecting air resistance and the weight of the rod, and assuming the
angle θ to be so small that sin θ practically equals θ.

(16) ] [Ex.2, Sec. 2.4, Kreyszig] Consider the damped system my” + cy′ + ky = 0 with IC
y(0) = 0.16m, y′(0) = 0 where m = 10, k = 90 under the following conditions
(a) c = 100kg/sec,
(b) c = 60kg/sec,
(c) c = 10kg/sec.

[Clue: a) y = −0.02e−9t + 0.18e−t (overdamping)
b) y = (0.16 + 0.48t)e−3t (critical damping)

c) y = e−t/2(0.16 cos 2.96t+ 0.027 sin 2.96t) (underdamping) ]

Solutions

2. This is first order linear ODE x′+Px = Q, where P = − sin t, Q = 2te−cost. The general
formula gives

x(t) = e−
∫
P

∫
e
∫
PQdt = e

∫
(sin t)

∫
e
∫
(− sin t)2te−costdt

=e
∫
(sin t)

∫
ecos t2te−costdt = e

∫
(sin t)

∫
2tdt

=e−cost(t2 + C)

Now plugging in t = 0, x = 1 to obtain C = e.
3. It is Exact by the following test: The differential form Mdx+Ndy = 0 is exact ⇐⇒

∂N

∂x
=
∂M

∂y

Since it is exact, there exists f(x, y) such that df = fxdx+ fydy = Mdx+Ndy. We will
solve f to obtain the equation f(x, y) = C which implicitly defines the solution of

(2x sin y + 3x2y)dx+ (x3 + x2 cos y + y2)dy = 0
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From ∂f
∂x = 2x sin y + 3x2y we get

f(x, y) =

∫
(2x sin y + 3x2y)dx = x2 sin y + x3y + C(y)

Taking derivative in y of the above yields

∂yf(x, y) = ∂y(x
2 sin y + x3y + C(y))

=x2 cos y + x3 + C ′(y) = N = x3 + x2 cos y + y2

which suggests C ′(y) = y2 → C(y) = y3/3. Hence we arrive at the equation

f(x, y) = x2 sin y + x3y + y3/3 = C.

6*. This is first-order quadratic equation (Bernoulli type). n = 2 Substitution w = y1−n =

y−1 → y = w−1. We have dy
dx = −w−2 dwdx and so

− w−2dw
dx

= 6
w−1

x
− xw−2

(multiplying −w2 both sides→)
dw

dx
= −6

w

x
+ x

This is a 1st-order ODE, you can solve to get w = w(x) and then replace w by y−1 and
then simplify to obtain the solution y = y(x).

Indeed,

w = w(x) = e−
∫

6
x

(∫
e
∫

6
xxdx

)
=e−6 ln |x|

(∫
x6xdx

)
= x−6(x8/8 + C)

=x2/8 + Cx−6.

From this we obtain y = 1
x2/8+Cx−6 .

7 Solve the characteristic equation

r4 + 8r2 + 16 = 0

(r2 + 4)2 = 0

r1,2 = ±2i, r3,4 = ±2i.

8 Clue: (a) Consider F (x, y) = xy, then xy = C are family of level curves for F . The
gradient ∇F = 〈y, x〉 will be normal to these level curves. Hence, following the slope
field method the orthogonal trajectories satisfy

dy

dx
= f(x, y) =

Fy
Fx

from which we can solve for y = y(x).
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10 a0 = 1− x2, a1 = −3x, a2 = −1, we find a′′0 − a′1 + a2 = −2− (−3) + (−1) = 0 =⇒
D((1− x2)D − 3x+ 2x)y = D

(
((1− x2)D − x)y

)
= 1

((1− x2)D − x)y =

∫
1dx = x+ C1

(1− x2)Dy − xy = x+ C1

Dy − x

1− x2
y =

x+ C1

1− x2
�

11 a) A direction field or slope field shows the directions of the family of solution curves,
which can be obtained by drawing short line-segments in the xy-plane based on the ODE

y′ = f(x, y)

where the slope of the line segment at (x, y) is given exactly by f(x, y). Plot the solution
curves that fit this field by following the flows or “’trajectories” in the direction field
passing (i) (0, 0); (ii) (0, 0.5); (iii) (0,−1.5).

b) limt→∞ y(t) = 0; limt→−∞ y(t) = 1
c) limt→∞ y(t) = −∞; limt→−∞ y(t) = −1

12 a) A direction field is made up of short line-segments indicating the slopes of the tangent
lines of the solution curve at each coordinate points within its domain. Typically we can
organize the line-segments using either grid method or level sets method. One can use
the direction field to sketch (approximate) solution curves through specific points in the
field by following those small lines in the direction field.

b) No constant solution.
c) Yes. Straight line solution is given by y = t+ 1.
d) c = 1.

13 a) For fixed idea, let us consider y′ = y−3, y(1) = −1. Apply separation of variable

method to obtain y(t) = ±(C + 4t)1/4. Also the I.C. requires C = −3. Hence y =

−(4t− 3)1/4. We can tell that there exists one and only one solution on (34 ,∞).
b) Divided into two cases y > 0 and y < 0. In either case we find that the general

solution is given by y = ( t3 + C)3.

Substitute the point (t0, y0) to determine C = y
1/3
0 − t0

3 . Hence the solution shows
that there always exists one and only one solution, even though the function f(x, y) =

|y|2/3 = y2/3 does not have a continuous partial derivative at (t0, 0)!
c) This is 1st-order linear equation. The E and U theorem for 1st-order linear ode

tells that, since the coefficients p = 3/t and Q = 7t3 are continuous on an interval
I = (0,∞) and (−∞, 0), there exists a unique solution on I.

We can verify this by solving the ode to find that y = t4 + C
t3

. Sub. the I.C. to obtain

C = −2. Hence y = t4 − 2
t3

, which verifies the E and U assertion.

16 Solve the characteristic equation mr2 + cr + k = 0. from which we can obtain funda-
mental set

(a) {er1t, er2t} if r1 6= r2;
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(b) {er1t, ter1t} if r1 = r2;
(c) {eαt cos(βt), eαt sin(βt)} if r1, r2 complex conjugate α+ iβ.


