Project 2 Math 5530

Name

Id

Read each question carefully. Avoid simple mistakes. You must show your work step by step to justify the answer in order to receive full credits.
[The assignment covers sections 9.7, 9.8, 9.9, 11.1-11.4, 11.7. Question(s) marked with $*$ is for graduate students]

1. [8] The force in an electrostatic field given by $f(x, y, z)$ has the direction on the gradient. Find ∇f and its value at P where

$$
f(x, y)=\frac{x}{x^{2}+y^{2}}, \quad P=(1,-2)
$$

2. [8] In the study of the motion of a fluid in a given region Ω in the plane, the divergence div \mathbf{u} measures outflow minus inflow, generally speaking. In the incompressible (constant density) case, if the flow has no sources or sinks in Ω, that is, $\operatorname{div} u=0$, then the velocity field \mathbf{u} is referred to as solenoidal. For what u_{3} is $\mathbf{u}=\left\langle e^{x} \cos y, e^{x} \sin y, u_{3}\right\rangle$ solenoidal?
Clue: $\operatorname{div} \mathbf{u}=\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}+\frac{\partial u_{3}}{\partial z}$.
3. [8] Let \mathbf{u} be the velocity vector of a steady fluid flow.
(a) Is the flow irrotational?
(b) Incompressible?
$\left(c^{*}\right)$ Find the streamlines (the paths of the particles)

$$
\mathbf{u}=\langle-y, x, \pi\rangle
$$

(Clues: (a) Compute curl $\mathbf{u}=0$ or not;
(b) Calculate div $\mathbf{u}=0$ or not.
(c) Read Section 9.9.
4. [8] Find the Fourier series $F f$ of the 2π-periodic function

$$
f(x)= \begin{cases}1 & x \in[0, \pi) \\ 0 & x \in[\pi, 2 \pi) .\end{cases}
$$

where $F f(x):=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$, and for all $n=$ $0,1,2, \ldots$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos (n x) d x \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (n x) d x
\end{aligned}
$$

Compare $F f$ and f and evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}$.
5. [8] Represent $f(x)=\left\{\begin{array}{ll}\sin x, & x \in(0, \pi) \\ 0, & x>\pi\end{array}\right.$ as an cosine-Fourier integral

$$
f(x)=\int_{0}^{\infty} A(k) \cos (k x) d k,
$$

where $A(k)=\frac{2}{\pi} \int f(x) \cos (k x) d x$.

