Project 2	Name
Math 5530	Id

Read each question carefully. Avoid simple mistakes. You must show your work step by step to justify the answer in order to receive full credits.

[The assignment covers sections 9.7, 9.8, 9.9, 11.1-11.4, 11.7. Question(s) marked with * is for graduate students]

1. [8] The force in an electrostatic field given by f(x, y, z) has the direction on the gradient. Find ∇f and its value at P where

$$f(x,y) = \frac{x}{x^2 + y^2}, \qquad P = (1,-2)$$

2. [8] In the study of the motion of a fluid in a given region Ω in the plane, the divergence div **u** measures outflow minus inflow, generally speaking. In the incompressible (constant density) case, if the flow has no sources or sinks in Ω , that is, div u = 0, then the velocity field **u** is referred to as **solenoidal**. For what u_3 is $\mathbf{u} = \langle e^x \cos y, e^x \sin y, u_3 \rangle$ solenoidal?

Clue: div $\mathbf{u} = \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z}$.

- 3. [8] Let **u** be the velocity vector of a steady fluid flow.
 - (a) Is the flow irrotational?
 - (b) Incompressible?
 - (c^{*}) Find the streamlines (the paths of the particles)

$$\mathbf{u} = \langle -y, x, \pi \rangle.$$

(Clues: (a) Compute $\operatorname{curl} \mathbf{u} = 0$ or not;

- (b) Calculate div $\mathbf{u} = 0$ or not.
- (c) Read Section 9.9.
- 4. [8] Find the Fourier series Ff of the 2π -periodic function

$$f(x) = \begin{cases} 1 & x \in [0, \pi) \\ 0 & x \in [\pi, 2\pi). \end{cases}$$

where $Ff(x) := \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$, and for all n = 0, 1, 2, ...

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx.$$

Compare Ff and f and evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$.

5. [8] Represent $f(x) = \begin{cases} \sin x, & x \in (0, \pi) \\ 0, & x > \pi \end{cases}$ as an cosine-Fourier integral

$$f(x) = \int_0^\infty A(k)\cos(kx)dk,$$

where $A(k) = \frac{2}{\pi} \int f(x) \cos(kx) dx$.