Math 5336   (Dr. J. Shi-Jun Zheng)


Office: Math-Phys 3306
Phone: 8 1338
E-mail: szheng at GeorgiaSouthern dot edu

 
Numerical solution   

\begin{equation*} \begin{aligned} \displaystyle {\mathbf{i}}\hbar \partial _t\varphi _1(t,{\mathbf{x}})&= {} \displaystyle \left[ -\frac{\hbar ^2}{2m}\nabla ^2+V({\mathbf{x}}) +E_1+c_0|\Phi |^2+ c_2(|\varphi _1|^2+|\varphi _0|^2-|\varphi _{-1}|^2) -\omega \widehat{L}_z\right] \varphi _1 + c_2{\varphi }_{-1}^*\varphi _0^2,\nonumber \\ \displaystyle {\mathbf{i}}\hbar \partial _t\varphi _0(t,{\mathbf{x}}) &= {} \displaystyle \left[ -\frac{\hbar ^2}{2m}\nabla ^2+V({\mathbf{x}}) +E_0+c_0|\Phi |^2 +c_2(|\varphi _1|^2+|\varphi _{-1}|^2)-\omega \widehat{L}_z\right] \varphi _0 +2c_2\varphi _{-1}{\varphi }_0^*\varphi _1,\nonumber\\ \displaystyle {\mathbf{i}}\hbar \partial _t\varphi _{-1}(t,{\mathbf{x}} ) &= {} \displaystyle \left[ -\frac{\hbar ^2}{2m}\nabla ^2+V({\mathbf{x}}) +E_{-1}+c_0|\Phi |^2+c_2(|\varphi _{-1}|^2+|\varphi _0|^2-|\varphi _1|^2) -\omega \widehat{L}_z\right] \varphi _{-1} + c_2\varphi _0^2{\varphi }_1^*. \end{aligned} \end{equation*}



Fixed point method

\begin{align*} & p_{n+1}=p_n-\frac{f(p_n)}{f'(p_n)} \end{align*}




  • A good guide on how to embed movie (mp4, avi, etc.) with html source code







  •    
       
       

    \( [t,y]=\textrm{ModifiedEuler}(a,b,y0,N) \quad \text{sloves Diff. Eqn.}\)

    \(\frac{dy}{dt} =y-t^{2}+1, \quad y(0)=0.5\)



    The universe is written in the language of mathematics (Galileo)

     Physics Modeling  Math Solution  Interpretation  Applications in Applied Science and Engineering


    Interactive Integration    Slope and direction fields demo (courtesy of Dr. Darryl Nester)

    MathJax examples  Simulation

    Math modeling and experimenting

    Schedule of the class
    Class schedule by chapters/sections (tentative)
    Math preliminaries; error analysis (Chapter 1)  
    Fixed point method; solutions of \(f(x)=0\) (Chapter 2)
    Interpolation and polynomial approximation (Chapter 3)
    Exam 1
    Numerical Differentiation and integration (Chapter 4)  
    *Numerical ODE; dynamical system (Chapter 5)
    Euler and Crank-Nicolson methods; stability
    Direct methods solving linear systems (Chapter 6)
    Finite difference discretization
    Interative Tech in Matrix Algebra; Approximation* (Chapter 7-8*)
    Exam 2*  
    Approximating Eigenvalues* (Chapter 9)
    Numerical solutions to PDEs (Chapter 12)
    Numerical optimization*
    Descent methods; gradient/conjudate gradient descent methods
    Final Exam



    Homework/Project assignments


    Office hours   M and W 3:00-4:30 pm or by appointment


    Important calendar dates


    Review   Exam     Date  
    Review Exam I     Exam I
    Review Exam II Exam II
    Review Exam III    Exam III  
    Review Final     Final Exam  




    Figure on  —  robotic design with neuronetworks


    Computing Lab