\begin{equation*} \begin{aligned} \displaystyle {\mathbf{i}}\hbar \partial _t\varphi _1(t,{\mathbf{x}})&= {} \displaystyle \left[ -\frac{\hbar ^2}{2m}\nabla ^2+V({\mathbf{x}}) +E_1+c_0|\Phi |^2+ c_2(|\varphi _1|^2+|\varphi _0|^2-|\varphi _{-1}|^2) -\omega \widehat{L}_z\right] \varphi _1 + c_2{\varphi }_{-1}^*\varphi _0^2,\nonumber \\ \displaystyle {\mathbf{i}}\hbar \partial _t\varphi _0(t,{\mathbf{x}}) &= {} \displaystyle \left[ -\frac{\hbar ^2}{2m}\nabla ^2+V({\mathbf{x}}) +E_0+c_0|\Phi |^2 +c_2(|\varphi _1|^2+|\varphi _{-1}|^2)-\omega \widehat{L}_z\right] \varphi _0 +2c_2\varphi _{-1}{\varphi }_0^*\varphi _1,\nonumber\\ \displaystyle {\mathbf{i}}\hbar \partial _t\varphi _{-1}(t,{\mathbf{x}} ) &= {} \displaystyle \left[ -\frac{\hbar ^2}{2m}\nabla ^2+V({\mathbf{x}}) +E_{-1}+c_0|\Phi |^2+c_2(|\varphi _{-1}|^2+|\varphi _0|^2-|\varphi _1|^2) -\omega \widehat{L}_z\right] \varphi _{-1} + c_2\varphi _0^2{\varphi }_1^*. \end{aligned} \end{equation*}
\begin{align*} & p_{n+1}=p_n-\frac{f(p_n)}{f'(p_n)} \end{align*}
|
\( [t,y]=\textrm{ModifiedEuler}(a,b,y0,N) \quad \text{sloves Diff. Eqn.}\)
The universe is written in the language of mathematics (Galileo) |
Class schedule by chapters/sections (tentative) | |||
---|---|---|---|
Math preliminaries; error analysis (Chapter 1) | |
||
Fixed point method; solutions of \(f(x)=0\) (Chapter 2) | |||
Interpolation and polynomial approximation (Chapter 3) | |
||
Exam 1 | |||
Numerical Differentiation and integration (Chapter 4) | |||
*Numerical ODE; dynamical system (Chapter 5) | Euler and Crank-Nicolson methods; stability |
||
Direct methods solving linear systems (Chapter 6) | Finite difference discretization |
||
Interative Tech in Matrix Algebra; Approximation* (Chapter 7-8*) | |
||
Exam 2* | |||
Approximating Eigenvalues* (Chapter 9) | |||
Numerical solutions to PDEs (Chapter 12) | |||
Numerical optimization* | Descent methods; gradient/conjudate gradient descent methods |
||
Final Exam |
Review | Exam | Date |
---|---|---|
Review Exam I | Exam I | |
Review Exam II | Exam II | |
Review Exam III | Exam III | |
Review Final | Final Exam |