Math 5539   (Dr. J. S. Zheng)


Office: Math-Phys 3306
Phone: 478 1338
E-mail: szheng at GeorgiaSouthern

 


   
  
Solve pendulum equation

\( \ddot{\theta}=-\dfrac{g}{L}\sin\theta \)


The universe is written in the language of mathematics (Galileo)

Math-Physics lab simulations link

Schedule of the class
Class schedule by chapters/sections (tentative)
Mechanical vibrations:Spring-mass and Pendulum motion (Chapter 1) 1.1 - 1.3, 1.4*
Heat conduction: diffusion, convection and advection (Chapter 2) 2.1 - 2.3*
Vibration of an elastic string/membrane (Chapter 3*) 3.1-3.5*
Exam 1   Chap.1, 2 and 3*
Separation of variables: Laplace equation and eigenvalue problem (Chapter 4) 4.1-4.2,4.3*-4.4*
Fourier series and integrals (Chapter 5) 5.1-5.2, 5.3*
Population dynamics (Chapter 6) 6.1-6.2, 6.3**
**Traffic flow (Euler system)  (Chapter 7**) 7.1*, 7.2-7.3*
Exam 2   Chap.4, 5 and part of Chap.6* & 7**
**Numerical Simulations 8.1**-8.2**
Final Exam May 6, Thursday 3-5 pm



Homework/Project assignments (on Folio)


Zoom hours   Tuesday/Thursday 2:30-3:30 or other special times by appointment only


Important calendar dates


Review   Exam     Date  
Review Exam I    Exam I
Review Exam II Exam II
Review Exam III    Exam III  
Review Final      Final Exam  



Reading-Tutorial   Reading/Tutorial     Chapter/Section  
Reading I    Tutorial I
Reading II Tutorial II
Reading III    Tutorial III  
Reading IV      Tutorial IV  



     


MathJax examples  Simulation


Green's theorem (2d):

\begin{align*} &\int_{\partial R}\mathbf{F}\cdot \mathbf{n} ds=\int_R \mathrm{div}\mathbf{F} dA \end{align*}


The divergence theorem in 3d (Gauss' theorem):

\begin{align*} \int_{\partial\Omega}\mathbf{F}\cdot \mathbf{n} d\omega=\int_{\Omega} \mathrm{div} {\bf F} dV\end{align*}





Classical harmonic oscillator
   
Quantum oscillator levels


Computing Lab