Class schedule by chapters/sections (tentative) | |||
---|---|---|---|
Vectors and Geometry of Space | 12.1 - 12.5, 12.6* | ||
Vector-Valued Functions and Motion in Space | 13.1 - 13.5, 13.6* | ||
Exam 1 | Chap 12 and part of Chap 13 | ||
Partial Derivatives | 14.1 - 14.8, 14.9*, 14.10* | ||
Multiple Integrals | 15.1 - 15.7 | ||
Exam 2 | Chap 14 and part of Chap 15 | ||
Integration in Vector Fields | 16.1 - 16.7, 16.8* | ||
Exam 3* | part of Chap 16* | ||
Cumulative Final Exam |
Review | Exam | Date |
---|---|---|
Review Exam I | Exam I | |
Review Exam II* | Exam II | |
Review Exam III* | Exam III* | |
Review Final | Final Exam | |
The universe is written in the language of mathematics (Galileo) \( \iiint_{\Omega} f(x,y,z) dV=\int_{\alpha}^{\beta}\int_{g_1(\theta)}^{g_2(\theta)}\int_{h_1(r,\theta)}^{h_2(r,\theta)} f(r,\theta,z) dz rdrd\theta\) |
Continuous fraction examples A continued express is denoted as a nested chain of fractions \( [a_0;a_1, a_2, a_3,\dots]:= a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+\cdots}}} \) \begin{equation*} \sqrt{2}=[1;2,2,2,2,\dots] \end{equation*} \begin{align*} &\pi=[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] \\ & \frac{4}{\pi}=1+\frac{1^2}{2+\frac{3^2}{2+\frac{5^2}{2+\frac{7^2}{2+\cdots} }}} \end{align*} \(e= [2; 1, 2, 1, 1, 4, 1, 1, 6, \dots]\) OEIS \begin{align*} & e=2+\frac{1}{1+\frac{1}{2+\frac{2}{3+\frac{3}{4+\frac{4}{\cdots}}}} } \end{align*} continuous fraction Calculator or alpertron CFC |